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Abstract 
 

Heart disease is the leading cause of mortality worldwide, exerting a significant influence on the national economic burden and productivity. 

The identification of heart disease is imperative for the prevention of more severe conditions, as it facilitates the detection of risks and 

symptoms at an early stage. The development of disease prediction models using machine learning has been extensively researched; 

however, the field continues to encounter challenges, including uneven data distribution and the presence of large, complex datasets. The 

proposed solution to these issues is the optimization of the Random Forest algorithm through the integration of the Synthetic Minority 

Over-sampling Technique and Edited Nearest Neighbor (SMOTE-ENN) with Recursive Feature Elimination and Cross-Validation 

(RFECV). The objective of these methods is to address the issue of data imbalance and to reduce irrelevant features, thereby enhancing the 

performance of the prediction model. The combination of SMOTE-ENN and RFECV consistently produces higher recall up to 0.984 and 

an optimal F1 score of 0.938. These results suggest that combining SMOTE-ENN data balancing and RFECV feature selection methods 

improves the performance of Random Forest, making it a promising approach for enhancing prediction models. 
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1. Introduction 

It has been determined that heart disease remains the primary cause of mortality on a global scale [1][2]. According to data from the World 

Health Organization (WHO), in 2019, an estimated 17.9 million individuals perished from heart disease, constituting 32% of the global 

mortality toll [3]. In Indonesia, data from BPJS Health indicates that as of May 2024, 1.89 million individuals had been diagnosed with 

heart disease. In addition to its status as the foremost cause of mortality, heart disease constitutes a substantial economic encumbrance on 

global health systems [4]. According to BPJS Kesehatan, the economic burden is estimated to reach IDR 67.34 trillion [5]. This disease 

has far-reaching consequences for public health, as it also exerts significant pressure on national productivity. This is particularly salient 

given that the productive age group is among the most vulnerable to the disease [6]. If not adequately addressed, an increase in heart disease 

cases can result in greater economic losses due to its impact, which extends from micro to macro scale [7]. 

One of the strategic steps that can be applied in helping to reduce the impact of heart disease is through the utilization of technology, 

particularly in the development of data-based prediction models [8]. In the field of early diagnosis, there has been a notable increase in the 

utilization of machine learning algorithms [9][10][11]. Machine learning, a branch of artificial intelligence, allows computers to identify 

patterns within data and generate predictions or make decisions without being explicitly programmed [12]. This technology has been 

applied in various fields, including medicine, to improve the efficiency of diagnosis and treatment [13][14]. The application of machine 

learning has the potential to enhance the accuracy and efficiency of predicting heart disease, thereby reducing the risk of complications 

and long-term treatment costs [15]. 

However, the application of machine learning algorithms as a prediction model faces several challenges, especially with regard to data 

imbalance between the majority class and the minority class [16][17]. Data imbalance is a phenomenon in which there is an uneven 

distribution of data points across different classes. This imbalance can cause the model to be biased towards the majority class, leading to 

a reduction in its ability to accurately identify data points from the minority class. This issue is particularly problematic in machine learning 

models, where the imbalance can result in a decrease in the model's performance in identifying minority class data points [18]. Furthermore, 

the extensive utilization of features in the dataset can impede the efficacy of the model, particularly when certain features are found to be 

irrelevant or redundant [19][20]. Consequently, machine learning algorithms necessitate supplementary methods or techniques to enhance 

overall performance [21]. 

Research on heart disease detection has been conducted by several researchers by applying supervised learning-based algorithm models 

[22]. A review of the extant literature reveals a range of findings regarding the accuracy of these measurements. For instance, a study 
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examined coronary artery calculation scores to predict coronary heart disease risk employing various methods, including Random Forest, 

radial basis function neural network (RBFFN), SVM, KNN, and kernel ridge regression (KRR) [23]. A comparative analysis of the five 

methods reveals that Random Forest demonstrates optimal performance, exhibiting 78.96% accuracy, 93.86% sensitivity, 51.13% 

specificity, MCC 0.5192, and AUC 0.8375. 

Another research focuses on the comparison of Random Forest and SVM methods in diabetes prediction [24]. This study employed data 

sampling methods such as SMOTE, ENN, and a combination of SMOTE-ENN. The findings indicated that the Random Forest with 

SMOTE-ENN approach attained 95.8% accuracy, 98.3% sensitivity, and 92.5% specificity. Concurrently, the SVM with SMOTE-NN 

attained 90% accuracy, 91.1% sensitivity, and 88.5% specificity. These findings suggest that the application of the SMOTE-ENN method 

significantly enhances the classification performance of diabetic diseases in comparison to the use of SMOTE or ENN separately. 

Another research study aims to provide a comparative analysis of various machine learning models in detecting code smells. The study 

utilizes four distinct datasets: Blob Class, Data Class, Long Parameter List, and Switch Statement [25]. The preprocessing methods 

employed include the use of SMOTE to address class imbalance and Recursive Feature Elimination (RFE) for feature selection. The models 

that were evaluated in this study include Extreme Gradient Boosting, AdaBoost, Random Forest, Artificial Neural Network (ANN), and 

Ensemble Model of Bagging and Boosting Classifiers (EMBBC). The findings indicate that the integration of SMOTE and RFE leads to a 

substantial enhancement in the classification performance, with the EMBBC model attaining the maximum accuracy of 99.21% on the 

Blob Class, Data Class, and Long Parameter List datasets. Concurrently, the ANN model attained the maximum accuracy of 92.86% on 

the Switch Statement dataset. In light of the foregoing, the present research proffers a methodology for the detection of heart disease, 

employing a hybrid sampling approach that incorporates the SMOTE-ENN method and RFECV feature selection with the Random Forest 

classification algorithm. 

2. Research methods 

This section outlines the methodology applied in this study, starting from data collection to evaluation. The research was conducted through 

a systematic sequence of processes designed to optimize heart disease prediction using machine learning. An overview of the research 

workflow is presented in Fig. 1, illustrating the key stages involved in the process, including data preprocessing, data balancing, feature 

selection, classification, and evaluation. 

 
Fig. 1: Research Workflow 

2.1. Data collection 

In order to assess the efficacy of the proposed algorithm, five groups of datasets were obtained from the UCI Machine Learning Repository. 

The selection of these datasets was driven by two key factors: their relevance in the context of heart disease prediction and the diversity of 

their class distributions. The proportion of majority and minority classes varies across each dataset, thereby enabling a more profound 

examination of the algorithm's efficacy, particularly in scenarios where data imbalance is prevalent. The data set under consideration 

comprised 1,190 samples drawn from the Cleveland, Hungarian, VA Long Beach, Switzerland, and Statlog datasets. A closer look reveals 

that the five datasets under consideration share a total of 14 common attributes. Of these, 13 attributes serve as features for analysis, while 

1 attribute is a target variable that indicates the diagnosis of heart disease. The details of the heart disease datasets used in this study, 

including the number of samples and the distribution of minority and majority classes for each dataset, are summarized in Table 1. 

Table 1: Dataset Description 

No Attributes Samples Minority Sample Majority Sample 

1 Cleveland 303 139 164 

2 Hungarian 294 106 188 

3 Long Beach VA 200 51 149 

4 Switzerland 123 8 115 
5 Statlog 270 120 150 
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2.2. Data preprocessing 

The pre-processing stage in this research involves a series of steps aimed at cleaning, transforming, and preparing the data 

for machine learning algorithms to use. The preliminary stage of the data analysis process involves the purification of data 

and the standardization of variables. The objective of the data cleaning process is to address issues pertaining to data quality, 

including missing values and anomalies. Missing values in the dataset are addressed through the implementation of a hot-

deck imputation technique, which involves the replacement of missing values in a feature with values extracted from other 

data elements within the dataset that exhibit similar or most similar characteristics. Subsequent to the cleansing of the data, 

feature scaling is executed through the utilization of the MinMaxScaler method. This technique involves the standardization 

of each numeric feature into a range of 0 to 1, thereby ensuring that all features are expressed on a uniform scale. Following 

the completion of data cleaning and normalization, the dataset is divided into two distinct subsets: training data and testing 

data. In this study, three different data splitting ratios are employed: 70:30, 75:25, and 80:20. These ratios are used to 

distribute the data for training and testing purposes. 

2.3. Data balancing with SMOTE-ENN 

The data balancing technique employed in this research is the hybrid SMOTE-ENN (Synthetic Minority Oversampling Technique - Edited 

Nearest Neighbors) method. This method is a combination of oversampling and undersampling techniques, designed to create a more 

balanced class distribution while improving data quality. The Synthetic Minority Oversampling Technique (SMOTE) is a data mining 

method that oversamples minority classes by creating new synthetic samples from interpolating values between adjacent minority data 

points. Meanwhile, Edited Nearest Neighbors (ENN) is an undersampling technique that aims to improve dataset quality by removing 

majority samples that could potentially cause ambiguity or noise. ENN identifies and removes the majority examples that do not have close 

enough nearest neighbors from the minority class, thus cleaning the dataset from irrelevant data. SMOTE-ENN integrates the benefits of 

SMOTE, which involves the addition of synthetic data to enhance representativeness, with the advantages of ENN, which is designed to 

remove noise from data. In this study, several combinations of SMOTE-ENN parameters were tested to evaluate their impact on model 

performance. The tested parameter combinations are described in Table 2 below: 

Table 2: SMOTE-NN Hyperparameter 

Hyperparameter Description Value 

sampling_strategy 
The ratio of the number of minority class samples to the majority 

class after the oversampling process with SMOTE 

1 = 100% 

0.95 = 95% 

0.9 = 90% 

n_neighbors 
The number of nearest neighbors used by ENN to remove 

inconsistent majority data samples 

3 

5 

7 

2.4. Feature selection with RFECV 

Subsequent to achieving balance within the dataset, the subsequent step involves the implementation of a feature selection process that 

utilizes Recursive Feature Elimination with Cross Validation (RFECV). This process is employed to identify the most pertinent features 

that contribute to the prediction of heart disease. The RFECV methodology involves a recursive process of feature elimination. Initially, 

the training of the classification model is conducted using the complete set of features. Subsequently, features that exhibit minimal 

contribution to the model's performance are systematically removed. At each iteration, cross-validation is performed to evaluate the 

remaining feature combinations. This process ensures that the selection process considers not only accuracy on training data, but also 

generalization to new data. To ensure robustness and to evaluate the impact of validation size, this research applies three different cross-

validation fold configurations during RFECV: 3-fold, 5-fold, and 10-fold. These variations allow for an assessment of how different 

partitioning schemes influence the selection of optimal features and overall model stability. The objective of this process is to enhance the 

efficiency and accuracy of the classification model by eliminating features that are redundant or have minimal impact on the classification 

outcomes. 

2.5. Classification with random forest 

For the purpose of classification, this research employs the Random Forest model as an analytical method. Random Forest is an ensemble 

algorithm that functions by constructing a multitude of decision trees autonomously. Each decision tree is trained on a random subset of 

the data, which helps increase variation and reduce the risk of overfitting. Subsequent to the construction of all the decision trees, Random 

Forest integrates the prediction results from each tree by employing a voting method for classification. This process yields a more stable 

and accurate final prediction compared to a single decision tree model.  

 

2.6. Model Evaluation Using Confusion Matrix 

 
In the final stage, the performance of the implemented strategy is measured by evaluating it using relevant metrics. This study uses a variety 

of metrics, including accuracy, precision, recall, and F1-score, to evaluate the model. The evaluation results are subsequently presented in 

the form of a confusion matrix, thereby providing an overview of the model's performance. 
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3. Results and discussion 

The present study evaluates the performance of the Random Forest model in predicting heart disease under four experimental scenarios: 

(i) the first method did not include feature selection or data balancing, (ii) the second method employed data balancing using SMOTE-

ENN only, (iii) the third method used feature selection using RFECV only, and (iv) the fourth method combined SMOTE-ENN and 

RFECV. The evaluation is conducted using different data split ratios (70:30, 75:25, and 80:20) and explores various parameter 

configurations, including SMOTE-ENN's sampling_strategy (1.0, 0.95, 0.90) and n_neighbors (3, 5, 7), as well as the number of cross-

validation folds (3, 5, and 10) for RFECV. The performance of the model is evaluated using four standard evaluation metrics: Accuracy, 

Precision, Recall, and F1-Score. This approach provides a comprehensive understanding of how data balancing and feature selection 

influence the Random Forest model's predictive capability in heart disease classification. In total, 120 experimental trials were conducted 

across all scenarios and data split ratios. For clarity and conciseness, the following tables present only the optimal performance achieved 

for each scenario within its respective data ratio. 

Table 3: Optimal Performance Metrics for Each Scenario in 70:30 Data Ratio 

Scenario sampling_strategy n_neighbors CV Folds 
Performance 

Accuracy Precision Recall F1-score 

1 - - - 0.877 0.889 0.889 0.889 

2 0.95 5 - 0.949 0.888 0.967 0.926 

3 - - 3 0.882 0.894 0.894 0.894 

4 0.90 3 10 0.924 0.891 0.934 0.912 

Table 3 presents the performance comparison of all four experimental scenarios under the 70:30 data split configuration, including various 

parameter settings for SMOTE-ENN and RFECV. The baseline model (Scenario 1), which does not apply any data balancing or feature 

selection, achieved a moderate F1-Score of 0.889. Scenario 2, which utilizes SMOTE-ENN alone, showed a substantial improvement, 

reaching the highest F1-Score of 0.926 at a sampling_strategy of 0.95 and n_neighbors of 5. This configuration also resulted in a high 

Accuracy of 0.949 and a Recall of 0.967, indicating its effectiveness in identifying minority class instances. Scenario 3, involving only 

RFECV, yielded a slightly better F1-Score of 0.894 (at 3-fold cross-validation) compared to the baseline, demonstrating the advantage of 

reducing irrelevant features, albeit with less impact than data balancing. Scenario 4, which combines SMOTE-ENN and RFECV, achieved 

a strong F1-Score of 0.912 with sampling_strategy 0.90, n_neighbors 3, and 10-fold CV, highlighting the benefit of integrating both 

techniques, although the highest result was still obtained in Scenario 2. 

Table 4: Optimal Performance Metrics for Each Scenario in 75:25 Data Ratio 

Scenario sampling_strategy n_neighbors CV Folds 
Performance 

Accuracy Precision Recall F1-score 

1 - - - 0.869 0.880 0.885 0.882 
2 0.9 5 - 0.946 0.902 0.949 0.925 

3 - - 5 0.896 0.891 0.894 0.896 

4 0.90 5 5 0.946 0.893 0.962 0.926 

For the 75:25 data split, Table 4 illustrates that the baseline model (Scenario 1) yielded an F1-Score of 0.882. The application of SMOTE-

ENN alone (Scenario 2) once again demonstrated a significant improvement, achieving an F1-Score of 0.925 with a sampling_strategy of 

0.90 and n_neighbors set to 5. This configuration also produced a high Accuracy of 0.946 and a strong Recall of 0.949. Scenario 3, which 

involved feature selection using RFECV only, offered a modest improvement over the baseline, attaining an F1-Score of 0.896 with 5-fold 

cross-validation. Notably, Scenario 4, which combined both SMOTE-ENN and RFECV, outperformed all other configurations with the 

highest F1-Score of 0.926, obtained using a sampling_strategy of 0.90, n_neighbors of 5, and 5 CV folds. This result highlights the 

effectiveness of integrating both data balancing and feature selection, as evidenced by the excellent Recall of 0.962, indicating a highly 

reliable model for detecting positive cases in this particular data split. 

Table 5: Optimal Performance Metrics for Each Scenario in 80:20 Data Ratio 

Scenario sampling_strategy n_neighbors CV Folds 
Performance 

Accuracy Precision Recall F1-score 

1 - - - 0.887 0.930 0.870 0.899 

2 0.9 5 - 0.944 0.906 0.935 0.921 

3 - - 10 0.903 0.939 0.891 0.914 

4 1 5 5 0.957 0.896 0.984 0.938 

For the 80:20 data split, as presented in Table 5, the baseline model (Scenario 1) achieved an F1-Score of 0.899. Scenario 2 (Random 

Forest with SMOTE-ENN) showed a substantial enhancement in performance, reaching an F1-Score of 0.921 using a sampling_strategy 

of 0.90 and n_neighbors of 5, accompanied by a high Accuracy of 0.944 and Recall of 0.935. Scenario 3 (Random Forest with RFECV) 

also improved upon the baseline, with an F1-Score of 0.914 at 10-fold cross-validation, demonstrating RFECV’s capability in boosting 

Precision, which reached 0.939. Most notably, Scenario 4, which integrates SMOTE-ENN and RFECV, delivered the best overall results 

across all scenarios and data ratios, achieving an F1-Score of 0.938 with sampling_strategy of 1.0, n_neighbors of 5, and 5 CV folds. This 

optimal configuration also attained the highest Accuracy of 0.957 and an outstanding Recall of 0.984, underscoring the powerful synergy 

of combining data balancing and feature selection. Such performance is particularly critical in medical diagnostics, where minimizing false 

negatives is essential for reliable disease detection. 

The bar chart below illustrates the average performance of the Random Forest model across four experimental scenarios. ach bar in the 

chart illustrates the average score of one of the four main evaluation metrics (accuracy, precision, recall, and F1-score) corresponding to a 
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specific scenario. This visualization offers a concise and interpretable comparison of how different optimization strategies influence the 

predictive capabilities of the model in heart disease classification. 

 
Fig. 2: Average Model Performance in Four Scenarios 

The graph in Fig. 2 provides an overall view of the average performance of the Random Forest model on each optimization scenario across 

test configurations. Scenario 1 (Baseline), which does not apply optimization, demonstrates the lowest average performance with an F1-

Score of 0.890, Accuracy of 0.877, Precision of 0.900, and Recall of 0.881. The relatively balanced performance among these metrics at 

the lowest level confirmed that, in the absence of optimization, the standard Random Forest model experienced challenges in handling the 

imbalanced and high-dimensional heart disease dataset. 

The implementation of SMOTE-ENN in Scenario 2 led to significant enhancements in performance metrics such as Accuracy and Recall, 

surpassing the performance of the baseline. The mean accuracy increased to 0.926, and the mean recall increased significantly to 0.911, 

indicating the efficacy of SMOTE-ENN in achieving class balance and enhancing the detection of the minority class (heart disease patients). 

However, the mean F1-Score remained at 0.890 (equivalent to the baseline), and the mean Precision marginally decreased to 0.872. This 

indicates a trade-off where aggressive Recall improvement through oversampling may cause the model to predict more positives, including 

some false positives, thus keeping the F1-Score at the same level despite the increase in true positive case detection. 

Scenario 3, which exclusively utilizes RFECV feature selection, demonstrates a more consistent and stable enhancement over the baseline. 

However, this enhancement is not as pronounced as that observed in Scenario 2 with respect to recall improvement. The mean Accuracy 

increased to 0.885, the mean Precision reached 0.907 (slightly higher than the baseline), and the mean Recall was 0.887. The mean F1-

Score attained 0.896, indicating a consistent and equitable enhancement. These findings substantiate the efficacy of RFECV in identifying 

the most pertinent subset of features, attenuating noise, and enhancing the model's capacity to make accurate positive predictions. This 

enhancement in Precision is particularly pronounced, with minimal trade-offs observed in other metrics. 

In scenario 4, which integrates both optimization techniques (SMOTE-ENN and RFECV), there is a demonstrable improvement in the 

average performance of the model when compared to the other scenarios. The mean accuracy achieved an average of 0.923, with the mean 

recall demonstrating the highest performance among all scenarios at 0.914. While the mean F1-Score remained consistent at 0.890 

(equivalent to the baseline and Scenario 2), the mean Precision exhibited a slight decrease to 0.867. However, Scenario 4 demonstrated a 

notable synergy, particularly in enhancing the detection of true positives (high Recall). The F1-Score, when considered in relation to the 

Precision, indicates that the model demonstrates a high degree of aggressiveness in detecting positive cases, despite a slight decrease in 

precision. In the context of heart disease diagnosis, where false negatives carry significantly more severe consequences than false positives, 

the substantial enhancements in recall and accuracy render this integrated approach optimal for enhancing the generalizability and 

performance of heart disease prediction models. 

4. Conclusion  

This study demonstrates the effectiveness of utilizing SMOTE-ENN for data balancing and RFECV for recursive feature elimination to 

significantly improve the performance of the Random Forest algorithm in predicting heart disease. Through 120 comprehensive 

experimental trials across varying data split ratios (70:30, 75:25, and 80:20) and diverse parameter configurations for both SMOTE-ENN 

(sampling_strategy, n_neighbors) and RFECV (CV Folds), the results consistently showed that the proposed hybrid approach achieved 

substantial gains in model accuracy and recall. Compared to the baseline model and individually optimized models, the combined use of 

SMOTE-ENN and RFECV consistently yielded higher recall rates, crucial for identifying positive cases. Specifically, the optimal 

configuration, prominently found with an 80:20 data split, achieved an impressive F1-score of 0.938 and an outstanding recall of 0.984. 

These results highlight the model's increased sensitivity in identifying positive heart disease cases, which is particularly valuable in clinical 

decision-making, where false negatives must be minimized. 
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