Design of a Web-Based Fleet Management Information System at PT Qtrans

Syaifur Rahmatullah Abdul Rojak¹*, Andy Setiyawan², Irmawati³

¹ ² Universitas Nusa Mandiri
³ Universitas Bina Sarana Informatika

Abstract

The development of technology is currently very rapid and has an important role as a basic need in life. Technological sophistication is a force that helps the smooth running of work and business processes. In some companies, there is fleet management which is an operational activity in sending or receiving goods. For this reason, the use of information technology is needed to manage this fleet. In this case, PT. Qtrans still lack of visibility and supervision, and there is no effective fleet monitoring and tracking system because Microsoft Excel still used to record the data. The data analysis reports on fleet management are still manual and do not support the fleet maintenance and maintenance process. The system development model carried out in this study uses the prototype method model. The application of a website-based fleet management information system is expected to make it easier for administrators to monitor and manage fleets at PT Qtrans.

Keywords: Information, Systems, Fleet Management

1. Introduction

The development of technology today is very rapid and has an important role as a basic need in life. The sophistication of technology is a force that greatly helps the smooth running of work and business processes. The use of information technology has helped various companies in launching their business and also competing with other companies. To support the performance of a company, technology is needed that can make it easier to process information quickly. In some companies, there is fleet management which is an operational activity in sending or receiving goods. For this reason, the use of information technology is needed to manage this fleet.

The background of the problem regarding fleet management involves the management and maintenance of a fleet of vehicles or equipment owned by an organization or company. Fleet management is important in a variety of sectors, including transportation, logistics, delivery companies, and other service services that rely on operating using a fleet of vehicles [1].

Vehicle fleets require regular maintenance and periodic maintenance to keep them in good condition and safe to use [2]. Problems can arise when maintenance schedules are irregular or when required repairs are not carried out in a timely manner, which can result in decreased vehicle performance, increased repair costs, and even safety risks for drivers and other road users [3].

Fleet management also involves determining the vehicle’s operational schedule and setting efficient routes [4]. Problems can arise when scheduling is not optimal, causing vehicles to get stuck in traffic jams or experience excessive idle time. Additionally, inefficient routing can lead to increased fuel costs and longer travel times [5].

Fleet management is a relevant activity at the operational level that must be faced by private companies and public institutions aimed at passenger transportation or freight transportation services [6]. In its use, both private companies and public institutions must know how to manage the fleet, so that they can ensure that the fleet that will be used for operational activities or official trips can run optimally. The Fleet Management System is structured to allow companies to obtain information on various aspects such as the use, maintenance, and operation of the fleet [7]. The information that needs to be obtained includes the distance traveled, the goals achieved, repairs and maintenance and periodic service planning of the fleet [8]. Reports can be generated once a week, once every two weeks, once a month, according to the needs.
2. Research Method

The system development model carried out in this study uses a prototype method model [8]:
1. Requirement Gathering
 In this phase, users and developers collaboratively define the entire software format, identify all the requirements related to system development, and outline the system to be created.
2. Building the Prototype
 Constructing the prototype design by creating a temporary design that focuses on presenting it to the users.
3. Evaluating the Prototype
 This evaluation is performed by the users to determine whether the system built meets their expectations. If it meets the expectations, the next step will be taken. If it does not, the prototype will be revised, repeating steps 1, 2, and 3.
4. Coding the System
 In this phase, if the prototype is accepted and agreed upon, it will be translated into the appropriate programming language.
5. Testing the System
 Once the system has been developed into a ready-to-use software, the next step is to test it before it is used or implemented. The testing in this study is carried out using the black box testing method.
6. Evaluating the System
 Users evaluate whether the system built meets their expectations or requirements. If it does, the process proceeds to step 7; if it does not, steps 4 and 5 are repeated.
7. Using the System
 The software that has been tested and accepted by the users is ready for use.

3. Result and Discussion

3.1. Software Needs Analysis

3.1.1. Analysis Stages

The fleet coordinator admin inputs data from the waybill, which can be easily accessed via the web. The specifications for the fleet management information system at PT Qtrans are as follows:

Front-End Page:
A1. Users can log in.
A2. Users can view the transaction list.
A3. Users can view transaction details.
A4. Users can update the kilometers.

Administration Page:
B1. Admin can log in.
B2. Admin can view the dashboard.
B3. Admin can manage transaction data.
B4. Admin can manage driver data.
B5. Admin can manage vehicle data.
B6. Admin can manage sales data.
B7. Admin can manage user data.
B8. Admin can view report data.

3.1.2. Use Case Diagram

The design of the web-based fleet management information system at PT Qtrans will be illustrated in a use case diagram, as follows:

![Use Case Diagram Front-End Page](image-url)
3.1.3. Activity Diagram

1. Activity Diagram Login Admin

![Activity Diagram](image_url)

Fig. 2: Use Case Diagram Admin Page

Fig. 3: Activity Diagram Admin Login
2. Activity Diagram Transaction Data Page

![Activity Diagram Transaction Data Page](image)

Fig. 4: Activity Diagram Transaction Data Page

3. Activity Diagram Driver Data Page

![Activity Diagram Driver Data Page](image)

Fig. 5: Activity Diagram Driver Data Page
4. Activity Diagram Vehicle Data Page

Fig. 6: Activity Diagram Vehicle Data Page

5. Activity Diagram Sales Data Page

Fig. 7: Activity Diagram Sales Data Page
6. Activity Diagram User Data Page

![Activity Diagram User Data Page]

Fig. 8: Activity Diagram User Data Page

3.2. Design

3.2.1. Analysis Stages

1. Logical Record Structure (LRS)

![Logical Record Structure Diagram]

Fig. 9: LRS (Logical Record Structure)
2. Entity Relationship Diagram (ERD)

![ERD Diagram]

Fig. 10: ERD (Entity Relationship Diagram)

3.2.2. User Interface

1. Interface Admin Login Page Menu

![Login Page]

Fig. 11: Interface Menu Admin Login Page
2. Interface Dashboard Page Menu

![Dashboard Data Page Menu Interface](image1.png)

Fig. 12: Dashboard Data Page Menu Interface

3. Interface Transaction Data Page Menu

![Transaction Data Page Menu Interface](image2.png)

Fig. 13: Transaction Data Page Menu Interface

4. Interface Driver Data Page Menu

![Driver Data Page Menu Interface](image3.png)

Fig. 14: Driver Data Page Menu Interface
5. Interface Vehicle Data Page Menu

![Vehicle Data Page Menu Interface](image1)

Fig. 15: Vehicle Data Page Menu Interface

6. Interface Sales Data Page Menu

![Sales Data Page Menu Interface](image2)

Fig. 16: Sales Data Page Menu Interface

7. Interface User Data Page Menu

![User Data Page Menu Interface](image3)

Fig. 17: User Data Page Menu Interface
8. Interface Report Data Menu

Fig. 18: Report Data Menu Interface

9. Interface Menu Login User

Fig. 19: User Login Menu Interface

10. Interface User Dashboard Menu

Fig. 21: Dashboard User Menu Interface
11. Interface Transaction Details Menu

![Transaction Details Menu Interface](image)

Fig. 21: Transaction Details Menu Interface

4. Conclusion

Based on the theory described and the facts observed in the field, several conclusions can be drawn, including:

1. The implementation of a web-based fleet management information system is expected to facilitate the fleet coordinator admin in monitoring and managing fleet data at PT Qtrans.
2. The implementation of this web-based fleet management information system is expected to expedite the fleet coordinator admin’s process of distributing fleets to drivers accurately and according to the data prepared from the warehouse.
3. The implementation of this web-based fleet management information system also makes it easier for drivers to submit their travel reports during the delivery and pickup processes, as drivers only need to access the Qtrans monitoring website via their personal smartphones.

References