

# Clustering Analysis of Administrative Service Types Using K-Means (Study Case: Village bojongsalam)

**Wafiq Azizah<sup>1\*</sup>, Ade Irma Purnamasari<sup>2</sup>, Agus Bahtiar<sup>3</sup>, Kaslani<sup>4</sup>**

<sup>1,2,3,4</sup>STMIK IKMI Cirebon

[wafiqazizahh@gmail.com](mailto:wafiqazizahh@gmail.com)<sup>1\*</sup>, [irma2974@yahoo.com](mailto:irma2974@yahoo.com)<sup>2</sup>, [agusbahtiar038@gmail.com](mailto:agusbahtiar038@gmail.com)<sup>3</sup>, [kaslani123@gmail.com](mailto:kaslani123@gmail.com)<sup>4</sup>

---

## Abstract

Advances in information technology present significant opportunities for the improvement of public services, especially in relation to the administrative functions of Bojongsalam Village. Reliance on traditional methods often leads to inefficiencies and inaccuracies in administrative processes. This research uses the K-Means algorithm to categorize administrative service data based on service type, document number, printing date, and accompanying remarks. Utilizing the Knowledge Discovery in Databases (KDD) framework, the analysis includes data selection, pre-processing, transformation, and clustering analysis conducted through RapidMiner software. The dataset consisted of 718 administrative records that had undergone a rigorous cleaning process, including attribute normalization. The analysis resulted in an optimal Davies-Bouldin Index (DBI) value of -0.498 at K = 4, with each cluster representing a different service utilization pattern. The issuance of Family Cards (KK) and Birth Certificates showed higher demand compared to other available services. This classification promotes workload optimization, fair resource allocation, and formulation of effective operational strategies. The application of the K-Means algorithm demonstrated its effectiveness in data clustering and made a significant contribution to technology-based administrative management. The findings lay a basic framework for addressing the needs of the community in a timely manner.

**Keywords:** *K-Means Clustering Method, Classification, Governance Services, Bojongsalam Community, Effectiveness.*

---

## 1. Introduction

The development of information technology has changed various aspects of life, including the public service sector. In Kelurahan Bojongsalam, administrative services are still carried out manually, which causes slow processes and often long lines. The K-Means algorithm offers a solution to group types of services based on community demand patterns, so that the service process can be more efficient and targeted [1]

The application of K-Means algorithm in various sectors has shown positive results. For example, research by [2] proved that this algorithm is effective in grouping patients based on their medical history to facilitate the organization of health services. However, the application of K-Means in the public administration sector, especially at the neighborhood level, is still minimal. This suggests an opportunity to explore the potential of K-Means in improving the efficiency of public services.

This research aims to implement the K-Means algorithm to categorize the types of administrative services in Kelurahan Bojongsalam, based on community demand patterns. Hopefully, the results of this research can help speed up the service process, reduce waiting time, and increase community satisfaction. In addition, this research is also expected to be a reference in developing data-based public service models and computing technology in other areas [3], [1].

## 2. Literature

### 2.1. Data Mining

Data mining is the process of analyzing data to discover hidden patterns and useful information from large data sets. This process is often used to help make better decisions in various fields, such as business, education, and government. In the academic context, research shows that data mining can improve the effectiveness of data analysis, for example in the evaluation of student learning outcomes [4]. This process involves data exploration techniques, such as clustering, classification, and prediction, which are applied to complex and diverse data.

## 2.2. Clustering

Clustering is a technique in data mining that aims to group data into several clusters based on similar characteristics. This technique is useful for segmentation analysis, both in health, education, and business. Previous studies revealed that clustering can be used to categorize data such as employee performance, nutrition levels, or teachers' level of understanding of learning methods [5]. With this method, data with similar properties can be grouped for further analysis.

## 2.3. Algoritma K-Means

K-Means algorithm is one of the most popular clustering methods due to its simplicity and efficiency in processing large data. This algorithm works by dividing data into clusters based on the closeness of the distance between data. The implementation of K-Means has been applied in various studies, such as clustering unemployment based on age [1] and clustering stock items in retail stores [6]. The main advantage of this algorithm is its ability to handle large datasets with a good level of accuracy.

## 3. Research methods

The research method is a stage carried out to collect and analyze data systematically with the aim of achieving the expected target. This research uses quantitative methods with the K-Means Clustering algorithm approach. Data analysis techniques refer to the Knowledge Discovery in Database (KDD) framework to ensure the process is carried out in an organized manner.

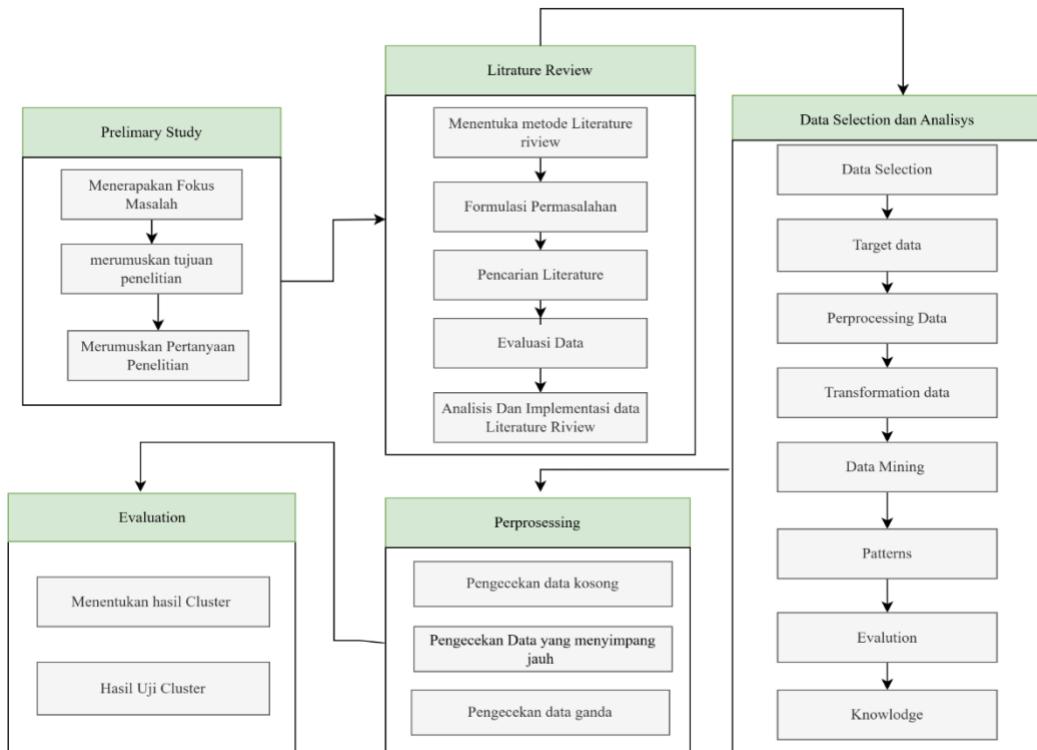



Figure 1: Research method.

Table 1: Research methods.

| Stages            | Activities                                            | Activity Description                                                                                                                                                |
|-------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preliminary Study | Defining the Problem Focus                            | Determining specific aspects or topics of administrative service types.                                                                                             |
|                   | Formulating Research Objectives                       | Establishing the main objectives of the research, such as understanding the types of services in Bojongsalam Village.                                               |
|                   | Formulating Research Questions                        | Crafting specific and relevant research questions.                                                                                                                  |
| Literature Review | Determining Literature Review Methods                 | Selecting methods to review relevant literature.                                                                                                                    |
|                   | Problem Formulation                                   | Identifying and formulating problems based on literature review.                                                                                                    |
|                   | Literature Search                                     | Searching for relevant articles and journals related to the use of the K-Means algorithm.                                                                           |
| Data Selection    | Data Evaluation                                       | Evaluating the quality and relevance of data from the reviewed literature.                                                                                          |
|                   | Data Analysis & Interpretation from Literature Review | Analyzing data to build a strong research foundation.                                                                                                               |
|                   | Identifying and Selecting Appropriate Data            | The data used in this research includes administrative service data in Bojongsalam Village, such as service types, document numbers, print dates, and descriptions. |

|                     |                                       |                                                                                                                                                                           |
|---------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Preprocessing  | Data Cleaning for Analysis            | Removing missing or inconsistent attributes to ensure high data quality.                                                                                                  |
| Data Transformation | Preparing Data for Analysis           | Converting selected data to suit the data mining process.                                                                                                                 |
| Data Mining         | Applying K-Means Clustering Algorithm | Performing data clustering using the K-Means algorithm with the help of RapidMiner software.                                                                              |
| Evaluation          | Evaluating Results                    | Assessing the relevance and accuracy of clustering results.                                                                                                               |
| Preprocessing       | Checking for Missing Data             | Ensuring the dataset does not contain missing values that could interfere with the analysis. Missing data is handled through deletion or imputation (mean, median, mode). |
|                     | Checking for Outliers                 | Identifying outliers that may affect analysis results using the K-Means method.                                                                                           |
|                     | Checking for Duplicate Data           | Removing duplicate entries to reduce bias in the analysis.                                                                                                                |
| Evaluation          | Determining Cluster Results           | Identifying members and patterns of each cluster based on clustering results.                                                                                             |
|                     | Cluster Quality Assessment            | Evaluating cluster quality using metrics such as the Davies-Bouldin Index (DBI).                                                                                          |

## 4. Results and Discussion

### 4.1. Research Result

The data obtained are the results of the use of administrative services by the community in Bojongsalam Village. This data is then selected to obtain relevant attributes. In this study, the attributes selected include service type, document number, month, printing, description. After attribute selection, the data is grouped based on the description column, document number, printing date. From the data selection process, there are 718 user data that utilize administrative services, resulting in a dataset as in table 2.

Table 2: Data

| NO  | TYPE OF SERVICE     | DOCUMENT NUMBER       | PRINTING DATE | MONTHS   | DESCRIPTION     | YEAR |
|-----|---------------------|-----------------------|---------------|----------|-----------------|------|
| 1   | FAMILY CARDS        | 3204282403050817      | 02-01-2023    | JANUARY  | Not yet printed | 2023 |
| 2   | FAMILY CARDS        | 3204280609120119      | 02-01-2023    | JANUARY  | Not yet printed | 2023 |
| 3   | FAMILY CARDS        | 3204282605120015      | 02-01-2023    | JANUARY  | Not yet printed | 2023 |
| 4   | CHILD IDENTITY CARD | 3204287001180001      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 5   | FAMILY CARDS        | 3204280401230010      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 6   | FAMILY CARDS        | 3204282003180015      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 7   | FAMILY CARDS        | 3204280401230010      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 8   | FAMILY CARDS        | 3204282508140022      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 9   | FAMILY CARDS        | 3204282211160020      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 10  | FAMILY CARDS        | 3204282903190012      | 10-01-2023    | JANUARY  | Not yet printed | 2023 |
| 11  | CHILD IDENTITY CARD | 3204280905140001      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 12  | FAMILY CARDS        | 3204282508140022      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 13  | CHILD IDENTITY CARD | 3204280905140001      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 14  | CHILD IDENTITY CARD | 3204280905140001      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 15  | CHILD IDENTITY CARD | 3204282708180001      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 16  | CHILD IDENTITY CARD | 3204285403180004      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 17  | CHILD IDENTITY CARD | 3204280905140001      | 20-01-2023    | JANUARY  | Not yet printed | 2023 |
| 18  | CHILD IDENTITY CARD | 3204280905140001      | 24-01-2023    | JANUARY  | Not yet printed | 2023 |
| 19  | FAMILY CARDS        | 3204280401230010      | 26-01-2023    | JANUARY  | Not yet printed | 2023 |
| ... |                     |                       |               |          |                 |      |
| ... |                     |                       |               |          |                 |      |
| 700 | FAMILY CARDS        | 3204251505180013      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 701 | FAMILY CARDS        | 3204282505110927      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 702 | FAMILY CARDS        | 3204282712230007      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 703 | FAMILY CARDS        | 3204280508150010      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 704 | FAMILY CARDS        | 3204282505160018      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 705 | FAMILY CARDS        | 320428003070033       | 29-12-2023    | DECEMBER | already printed | 2023 |
| 706 | FAMILY CARDS        | 3204281010220005      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 707 | FAMILY CARDS        | 3204282112150013      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 708 | DEATH CERTIFICATE   | 3204-KM-28122023-0001 | 29-12-2023    | DECEMBER | already printed | 2023 |
| 709 | FAMILY CARDS        | 3204281902140025      | 29-12-2023    | DECEMBER | already printed | 2023 |
| 710 | DEATH CERTIFICATE   | 3204-KM-27122023-0004 | 29-12-2023    | DECEMBER | already printed | 2023 |
| 711 | DEATH CERTIFICATE   | 3204-KM-28122023-0001 | 29-12-2023    | DECEMBER | already printed | 2023 |
| 712 | BIRTH CERTIFICATE   | 3204-LT-29122023-0090 | 29-12-2023    | DECEMBER | already printed | 2023 |
| 713 | FAMILY CARDS        | 3204282603050594      | 29-12-2023    | DECEMBER | already printed | 2023 |

## 4.2. Pre-Processing

The data cleaning process includes checking the dataset to ensure there is no empty data (Missing Value) and removing duplicate data (Double Data) contained in the database.

### a. Empty Data Checking

Checking empty data (Missing Value) in the dataset by looking at the existing columns. From the results of this check, it can be seen that there is no empty data in this dataset.

|                           |                      |            |   |
|---------------------------|----------------------|------------|---|
| <b>Id</b>                 | <b>JENIS LAYANAN</b> | Polynomial | 0 |
| <b>Label</b>              | <b>label</b>         | Nominal    | 0 |
| <b>NOMOR DOKUMEN</b>      |                      | Numeric    | 0 |
| <b>TANGGAL PENCETAKAN</b> |                      | Numeric    | 0 |
| <b>BULAN</b>              |                      | Numeric    | 0 |
| <b>KETERANGAN</b>         |                      | Numeric    | 0 |

Figure 2: Display of empty data checking results

### b. Checking Data that deviates far

Checking the minimum and maximum data values of each attribute in the dataset. The image shown shows that attributes such as service type, month, document number, printing date, and description have appropriate minimum and maximum values and can be used for further analysis.

| Name                      | Type       | Missing | Statistics                                                                                                    | Filter (6 / 6 attributes): |
|---------------------------|------------|---------|---------------------------------------------------------------------------------------------------------------|----------------------------|
| <b>Id</b>                 | Polynomial | 0       | Least: PINDAH DATANG (1)      Most: KARTU KELUARGA (283), KARTU KELUARGA (283), KARTU IDENTITAS ANA           | Values                     |
| <b>Label</b>              | Nominal    | 0       | Least: cluster_2 (124)      Most: cluster_1 (161)      Values: cluster_1 (161), cluster_4 (138), ... [3 more] |                            |
| <b>NOMOR DOKUMEN</b>      | Numeric    | 0       | Min: 0      Max: 569      Average: 296.394                                                                    |                            |
| <b>TANGGAL PENCETAKAN</b> | Numeric    | 0       | Min: 0      Max: 136      Average: 71.479                                                                     |                            |
| <b>BULAN</b>              | Numeric    | 0       | Min: 0      Max: 11      Average: 7.091                                                                       |                            |
| <b>KETERANGAN</b>         | Numeric    | 0       | Min: 0      Max: 3      Average: 1.884                                                                        |                            |

Figure 3: Result Display of Data Checking Results that Deviate Significantly

### c. Double Data Checking

After the Delete Duplicates process has been run, it can be concluded that out of the total

| Row No. | JENIS LAYA...  | BULAN    | NOMOR DO...    | TANGGAL P... | KETERANGAN  | TAHUN |
|---------|----------------|----------|----------------|--------------|-------------|-------|
| 657     | KK             | DESEMBER | 3204260508...  | 45288        | sudah cetak | 2023  |
| 668     | KK             | DESEMBER | 3204262505...  | 45288        | sudah cetak | 2023  |
| 669     | KK             | DESEMBER | 3204262003...  | 45288        | sudah cetak | 2023  |
| 670     | KK             | DESEMBER | 3204261010...  | 45288        | sudah cetak | 2023  |
| 671     | KK             | DESEMBER | 3204262112...  | 45288        | sudah cetak | 2023  |
| 672     | AKTA KEMATI... | DESEMBER | 3204-KM-281... | 45288        | sudah cetak | 2023  |
| 673     | KK             | DESEMBER | 3204261902...  | 45288        | sudah cetak | 2023  |
| 674     | AKTA KEMATI... | DESEMBER | 3204-KM-271... | 45288        | sudah cetak | 2023  |
| 675     | AKTA KEMATI... | DESEMBER | 3204-KM-281... | 45289        | sudah cetak | 2023  |
| 676     | AKTA KELAHI... | DESEMBER | 3204-LT-291... | 45289        | sudah cetak | 2023  |
| 677     | KK             | DESEMBER | 3204262603...  | 29/12/2023   | sudah cetak | 2023  |
| 678     | AKTA KELAHI... | DESEMBER | 3204-LT-290... | 29/12/2023   | sudah cetak | 2023  |
| 679     | AKTA KELAHI... | DESEMBER | 3204-LT-290... | 45289        | sudah cetak | 2023  |
| 680     | KK             | DESEMBER | 3204262403...  | 45289        | sudah cetak | 2023  |
| 681     | KK             | DESEMBER | 3204260104...  | 45289        | sudah cetak | 2023  |

Figure 4: Result Display of Data Checking Results that Deviate Significantly

The next step after pre-processing is the attribute selection process to select relevant features from the dataset. The attribute selection process is done to select relevant features from the dataset. This attribute selection process is done using the Select Attributes Operator, which helps the author select important features.



Figure 5: Display of Select Attributes Results

The Nominal to Numerical process is carried out to convert categorical attributes in administrative service data in Bojongsalam Village into numerical data. For example, categories such as "kk", "KTP", "Birth Certificate" are converted into numerical values to make it easier to process in further clustering analysis.

| Row No. | JENIS LAYANAN    | BULAN   | NOMOR DO... |
|---------|------------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1       | KARTU KELU...    | JANUARI | 1           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 2       | KARTU KELU...    | JANUARI | 0           | 1           | 0           | 0           | 0           | 0           | 0           | 0           |
| 3       | KARTU KELU...    | JANUARI | 0           | 0           | 1           | 0           | 0           | 0           | 0           | 0           |
| 4       | KARTU IDENTIT... | JANUARI | 0           | 0           | 0           | 1           | 0           | 0           | 0           | 0           |
| 5       | KARTU KELU...    | JANUARI | 0           | 0           | 0           | 0           | 1           | 0           | 0           | 0           |
| 6       | KARTU KELU...    | JANUARI | 0           | 0           | 0           | 0           | 0           | 1           | 0           | 0           |
| 7       | KARTU KELU...    | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 1           | 0           |
| 8       | KARTU KELU...    | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 1           |
| 9       | KARTU KELU...    | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 1           |
| 10      | KARTU IDENTIT... | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 11      | KARTU KELU...    | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 1           | 0           |
| 12      | KARTU IDENTIT... | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 13      | KARTU IDENTIT... | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| 14      | KARTU IDENTIT... | JANUARI | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

Figure 6: Result Display of Nominal to Numerical

This research process uses the K-Means Algorithm to group administrative service data in Bojongsalam Village based on relevant data characteristics. In this research, the author utilizes RapidMiner software to apply the K-Means Algorithm.

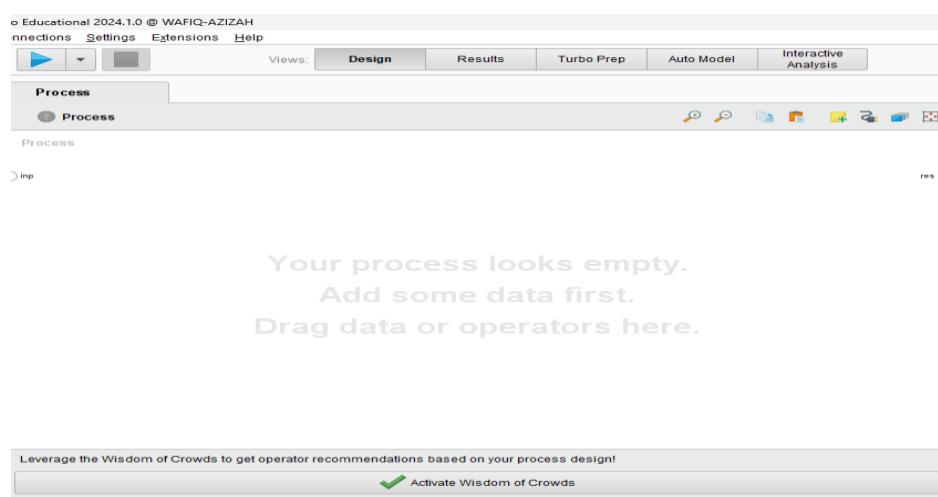



Figure 7: Rapidminer page

In Rapidminer, the process of creating a cluster model uses the K-Means operator. Furthermore, to generate model performance, the author conducted a test with cluster distance performance. This evaluation process is done by testing the model from cluster 2 to 10, to determine the optimal number of clusters.

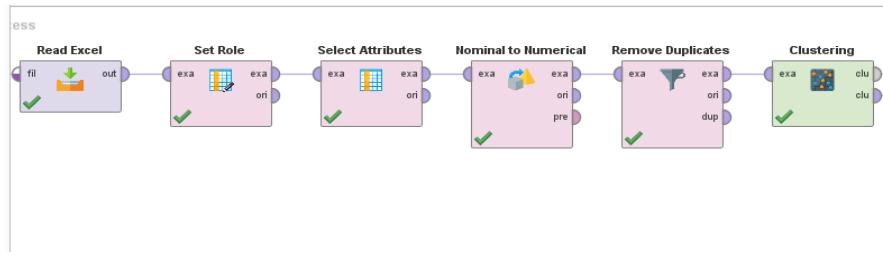



Figure 8: Cluster Model

#### 4.3. Model Evaluation

Model evaluation in this study was carried out to find the optimal cluster in the modeling process. This process aims to get the best cluster by using the Davies Bouldin Index (DBI) evaluation, where the smallest DBI value shows the best evaluation results. The results of the applied K-Means model include testing from the value of  $K = 2$  to  $K = 10$  can be seen and evaluated the performance value.

Table 3: Cluster Test Results (K=2 - K 10)

| Cluster | Cluster member                                                                                                                                                                                                                            | DBI value |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2       | Cluster 0: 362 items<br>Cluster 1: 319 items<br>Total number of items: 681                                                                                                                                                                | -0.503    |
| 3       | Cluster 0: 230 items<br>Cluster 1: 220 items<br>Cluster 2: 231 items<br>Total number of items: 681                                                                                                                                        | -0.499    |
| 4       | Cluster 0: 163 items<br>Cluster 1: 184 items<br>Cluster 2: 174 items<br>Cluster 3: 160 items<br>Total number of items: 681                                                                                                                | -0.498    |
| 5       | Cluster 0: 131 items<br>Cluster 1: 161 items<br>Cluster 2: 124 items<br>Cluster 3: 127 items<br>Cluster 4: 138 items<br>Total number of items: 681                                                                                        | -0.520    |
| 6       | Cluster 0: 140 items<br>Cluster 1: 106 items<br>Cluster 2: 115 items<br>Cluster 3: 106 items<br>Cluster 4: 107 items<br>Cluster 5: 107 items<br>Total number of items: 681                                                                | -0.518    |
| 7       | Cluster 0: 104 items<br>Cluster 1: 93 items<br>Cluster 2: 97 items<br>Cluster 3: 91 items<br>Cluster 4: 106 items<br>Cluster 5: 102 items<br>Cluster 6: 88 items<br>Total number of items: 681                                            | -0.531    |
| 8       | Cluster 0: 80 items<br>Cluster 1: 91 items<br>Cluster 2: 79 items<br>Cluster 3: 84 items<br>Cluster 4: 77 items<br>Cluster 5: 90 items<br>Cluster 6: 88 items<br>Cluster 7: 92 items<br>Total number of items: 681                        | -0.517    |
| 9       | Cluster 0: 65 items<br>Cluster 1: 82 items<br>Cluster 2: 79 items<br>Cluster 3: 73 items<br>Cluster 4: 91 items<br>Cluster 5: 90 items<br>Cluster 6: 65 items<br>Cluster 7: 65 items<br>Cluster 8: 71 items<br>Total number of items: 681 | -0.520    |

|    |                                                                                                                                                                                                                                                                  |        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 10 | Cluster 0: 76 items<br>Cluster 1: 63 items<br>Cluster 2: 89 items<br>Cluster 3: 60 items<br>Cluster 4: 69 items<br>Cluster 5: 67 items<br>Cluster 6: 68 items<br>Cluster 7: 61 items<br>Cluster 8: 68 items<br>Cluster 9: 60 items<br>Total number of items: 681 | -0.516 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|

So the optimal dbi value is at  $k = 4$  with the following cluster members:

a. David Bouldin Index (DBI)

Based on table 4.2 shows that the best cluster value, which has the lowest DBI value or close to 0, is in cluster 4 with a DBI value of -0.498 which consists of Cluster\_0: 163 items, Cluster\_1: 1 184 items, Cluster\_2: 174 items, Cluster\_3: 160 items. The cluster model results can be seen in Figure 9.

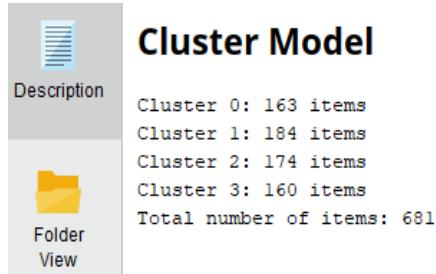



Figure 9: Description K-Means Cluster Model.

#### 4.4. Scatter plot

The figure below illustrates the results of applying the K-Means clustering algorithm to administrative services in Bojongsalam Village. The horizontal axis represents the status of the service (not printed, printed, double), while the vertical axis depicts the different types of services (e.g. Family Card, Birth Certificate).

Data is categorized according to service status and type, with green indicating that the service has been printed. This configuration facilitates the identification of services that require priority, especially those with a large amount of data pending printing, thus improving the efficiency of administrative operations.

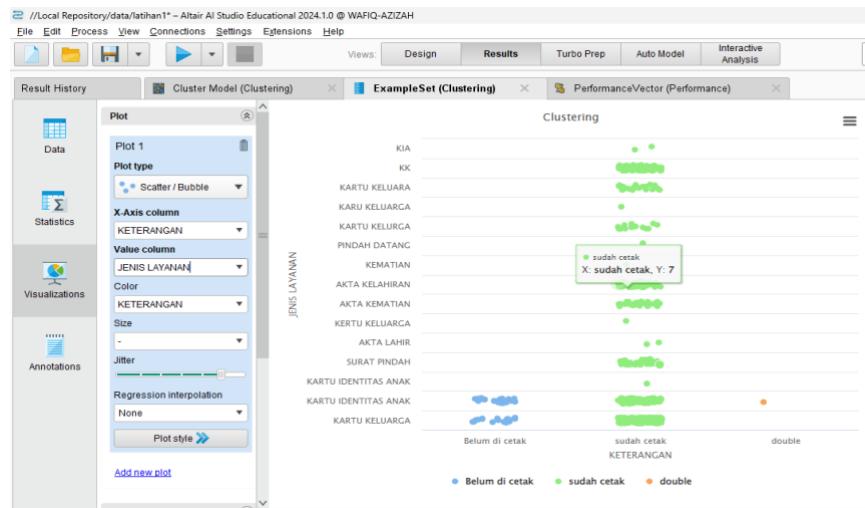



Figure 10: Scatter plot

#### 4.5. Knowledge

At this stage will discuss the interpretation and evaluation of the results that have been obtained in the previous stages, here researchers will discuss in more detail the results of the DBI value of the cluster test value  $K = 2$  to  $K = 10$ , and discuss each cluster based on characteristics.

The DBI results table can be seen below.

**Table 4: DBI Result**

| Cluster | David Bouldin Index (DBI) |
|---------|---------------------------|
| 2       | -0.503                    |
| 3       | -0.499                    |
| 4       | <b>-0.498</b>             |
| 5       | -0.520                    |
| 6       | -0.518                    |
| 7       | -0.531                    |
| 8       | -0.517                    |
| 9       | -0.520                    |
| 10      | -0.516                    |

## 5. Conclusions and Suggestions

### 5.1. Conclusions

This research proves that the K-Means algorithm effectively improves the efficiency of administrative services in Bojongsalam Village, with an optimal Davies-Bouldin Index (DBI) value of -0.498 at K=4. The algorithm is able to cluster data based on utilization patterns, identify community needs, and support workload distribution, allocation of additional resources, and automation of repetitive processes. The three main factors that affect efficiency are utilization frequency, service duration, and procedural complexity. Clustering also helps determine priority services, such as the issuance of Family Cards (KK) and ID cards, which require more attention, especially when workload is high. The findings provide strategic recommendations, including resource optimization, technology utilization, and staff competency improvement, which significantly improve operational efficiency and community satisfaction.

### 5.2. Suggestions

The suggestions given are:

1. Further research can explore the implementation of the K-Means algorithm with more varied parameters to improve operational efficiency, especially in administrative services with dynamic demand patterns.
2. It is recommended to utilize other algorithms or hybrid methods to compare analysis results, as well as evaluate factors such as frequency, duration, and complexity of procedures in more depth.
3. Future research could focus on developing automation systems based on clustering results, as well as prioritizing staff training and resource allocation for high-demand services.

## References

- [1] Andi Diah Kuswanto, Azumardi Nabil Fadhila, Paulus Tri Setiawan, Muhammad Kevin Setiawan, and Dody Renal Syahputra, "Penerapan K-Means Clustering Untuk Menentukan Jumlah Pengangguran Berdasarkan Umur," *Repeater Publ. Tek. Inform. dan Jar.*, vol. 2, no. 3, pp. 135–146, 2024, doi: 10.62951/repeater.v2i3.116.
- [2] M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, and D. Suhendro, "Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi," *BIOS J. Teknol. Inf. dan Rekayasa Komput.*, vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.19.
- [3] H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, "Implementasi Metode K-Means Untuk Pengelompokan Rekomendasi Tugas Akhir," *Inform. Mulawarman J. Ilm. Ilmu Komput.*, vol. 16, no. 1, p. 13, 2021, doi: 10.30872/jim.v16i1.5182.
- [4] N. Hendrastuty, "Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa," *J. Ilm. Inform. Dan Ilmu Komput.*, vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: <https://doi.org/10.58602/jima-ilkom.v3i1.26>
- [5] G. B. Kaligis and S. Yulianto, "Analisa Perbandingan Algoritma K-Means, K-Medoids, Dan X-Means Untuk Pengelompokan Kinerja Pegawai," *IT-Explore J. Penerapan Teknol. Inf. dan Komun.*, vol. 1, no. 3, pp. 179–193, 2022, doi: 10.24246/itexplore.v1i3.2022.pp179-193.
- [6] F. Rizki Ani, R. Kurniawan, and T. Suprapti, "Penerapan Algoritma K-Means Clustering Untuk Perencanaan Persediaan Stok Sepatu Di Toko Diomclothing," *JATI (Jurnal Mhs. Tek. Inform.)*, vol. 7, no. 6, pp. 3699–3707, 2024, doi: 10.36040/jati.v7i6.8233.