Integration of the Internet of Things in Smart Home Information Systems to Improve Security and Convenience

Authors

  • Milli Alfhi Syari STMIK Kaputama
  • Raihan Fatih Dzaky STMIK Kaputama
  • Rusmin Saragih STMIK Kaputama

DOI:

https://doi.org/10.59934/jaiea.v4i3.1010

Keywords:

IoT, Smart Home, ESP32, Sensor, Machine Learning

Abstract

The integration of the Internet of Things (IoT) in smart homes improves security and convenience with device automation. The system receives input from motion sensors (PIR), CCTV cameras, and temperature sensors (DHT22), and then processes data using the Machine Learning-based anomaly detection method that runs on the ESP32 module as the main controller. The data is sent to the cloud for further analysis and can be accessed via a mobile or web app. The results obtained in this study are in the form of device automation, real-time notifications, and security alerts when suspicious activity occurs. Testing shows detection accuracy of 92% and system responsiveness of 95%, proving its effectiveness in improving security efficiency and household comfort through smarter monitoring and control.

Downloads

Download data is not yet available.

References

Kholik, A., Santoso, D., & Purnomo, Y. (2023). Internet of Things (IoT) Based Smart Home System for Real-Time Monitoring. Journal of Emerging Technology and Innovative Engineering, 9(1), 14-21. [2] A. M. H. Pardede, M. Zarlis, and H. Mawengkang, “Optimization of Health Care Services with Limited Resources,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 4, pp. 1444–1449, 2019, doi: 10.18517/ijaseit.9.4.8348.

Nguyen, B. T., Nguyen, D. D. K., Nguyen, L. N. B., & Tan, L. D. (2023). A Machine Learning-Based Anomaly Packets Detection for Smart Home. In Proceedings of the 12th International Symposium on Information and Communication Technology (SOICT 2023). [4] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about smart cities,” IEEE Consum. Electron. Mag., vol. 5, no. 3, pp. 60–70, 2016, doi: 10.1109/MCE.2016.2556879.

Zamani, S., Talebi, H., & Stevens, G. (2023). Time Series Anomaly Detection in Smart Homes: A Deep Learning Approach. arXiv preprint arXiv:2302.14781.

Rejito, J., Stiawan, D., Alshaflut, A., & Budiarto, R. (2023). Machine learning-based anomaly detection for smart home networks under adversarial attack. Computer Science and Information Technologies, 5(2), 122-129.

Ambat, A., & Sahoo, J. (2024). Anomaly detection and prediction of energy consumption for smart homes using machine learning. ETRI Journal.

Kurniawan, H., & Lestari, D. (2023). Konsep dan Implementasi Internet of Things (IoT) dalam Kehidupan Sehari-hari. Jurnal Teknologi dan Inovasi Digital, 9(2), 45–52.PATIL&KULKARNI2023

Susanto, R., & Wijaya, F. (2024). Implementasi IoT pada Sistem Smart Home untuk Otomatisasi dan Keamanan Rumah. Jurnal Sistem Informasi dan Komputerisasi, 11(1), 22–30.

Ramadhan, A., & Putra, Y. (2023). Desain Sistem Smart Home Berbasis ESP32 dan IoT dengan Integrasi Sensor PIR, DHT22, dan CCTV. Jurnal Elektronika dan Kendali Cerdas, 7(1), 11–19.

Fauzan, M., & Rahmawati, I. (2024). Analisis Ancaman dan Perlindungan Siber pada Sistem Smart Home Berbasis IoT. Jurnal Keamanan Digital dan Sistem Cerdas, 6(2), 33–40.

Setiawan, D., & Prasetyo, A. (2023). Strategi Keamanan Berlapis pada Sistem Rumah Pintar Berbasis IoT. Jurnal Teknologi Informasi dan Komunikasi, 8(3), 55–62.

Hadi, M. R., & Sari, D. F. (2023). Sistem Keamanan Pintar pada Smart Home Berbasis IoT. Jurnal Keamanan Siber dan Teknologi Rumah Tangga, 6(2), 44–52.

Kholik, A., Utami, W. D., & Rahman, A. (2023). Penerapan Machine Learning untuk Deteksi Anomali pada Sistem Smart Home Berbasis IoT. Jurnal Teknologi dan Keamanan IoT, 9(1), 10–18.

Zhang, H., & Li, Y. (2024). Challenges in Machine Learning-Based Cybersecurity Systems. ACM Computing Surveys, 56(2), 1–29.

Wijaya, H., & Lestari, S. (2024). Peran Deteksi Anomali dalam Keamanan Sistem Smart Home Berbasis IoT. Jurnal Sistem Informasi dan Keamanan Siber, 12(1), 20–28.

Yuliani, R., & Hardiansyah, A. (2023). Pemanfaatan Sensor PIR, DHT22, dan Kamera CCTV dalam Sistem Otomasi Rumah Berbasis IoT. Jurnal Elektronika & Otomasi Rumah Tangga, 7(3), 35–43.A. Al-Ali, I. Zualkernan, and F. Aloul, “A Mobile GPRS-Sensors Array for Air Pollution Monitoring,” IEEE Sensors Journal, vol. 10, no. 10, pp. 1666–1671, 2010.

Pramono, A., & Ningsih, F. (2024). Penggunaan ESP32 sebagai Pengendali Utama dalam Smart Home Berbasis Cloud IoT. Jurnal Sistem Terintegrasi dan Teknologi IoT, 5(1), 58–65.

Rahmawati, D., & Nugroho, A. Y. (2023). Integrasi Aplikasi Mobile dengan Sistem Keamanan Berbasis IoT untuk Notifikasi Real-Time. Jurnal Sistem Informasi dan Keamanan, 8(3), 75–83.

Aziz, M., & Permana, R. A. (2022). Peningkatan Sistem Keamanan Smart Home dengan Pembelajaran Pola Perilaku Menggunakan AI. Jurnal Kecerdasan Buatan dan Sistem Otomatis, 7(2), 112–120.

Wijaya, R., & Lestari, F. N. (2023). Analisis Efektivitas Deteksi Ancaman Baru Menggunakan Algoritma Machine Learning dalam Sistem Smart Home. Journal of Smart Technology and AI, 5(1), 24–33.

Huang, Y., Liu, J., & Wang, T. (2024). Real-Time Intrusion Detection in IoT Networks Using Deep Learning Approaches. IEEE Internet of Things Journal, 11(2), 1102–1115.

Kumar, R., & Joshi, A. (2024). False Positive Reduction in AI-based Threat Detection Systems. Journal of Cybersecurity and Information Integrity, 6(1), 22–30.

Gao, L., Zhang, X., & Chen, M. (2024). Comparative Study of AI and Traditional Methods in Cyber Threat Detection. Computers & Security, 139, 103033.

IBM Research. (2024). AI-Powered Threat Detection: Enhancing Real-Time Security Analytics. IBM Security White Paper.

Singh, A., Patel, M., & Desai, R. (2023). Limitations of AI in Cybersecurity: An Empirical Analysis of Detection Accuracy and False Positives. Journal of Information Security and Applications, 73, 103511.

Chatterjee, S., Das, B., & Roy, N. (2024). Continuous Adaptation in AI Cyber Defense: A Review on Model Evolution and Resilience. Journal of Network and Computer Applications, 221, 103588.

Downloads

Published

2025-06-15

How to Cite

Milli Alfhi Syari, Raihan Fatih Dzaky, & Rusmin Saragih. (2025). Integration of the Internet of Things in Smart Home Information Systems to Improve Security and Convenience. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1772–1777. https://doi.org/10.59934/jaiea.v4i3.1010

Issue

Section

Articles