Prediction of Electricity kWh Sales in Pontianak City Using Linear Regression Method

Authors

  • Rido Safaryansyah Universitas Muhammadiyah Pontianak
  • Alda Cendekia Siregar Universitas Muhammadiyah Pontianak
  • Istikoma Universitas Muhammadiyah Pontianak

DOI:

https://doi.org/10.59934/jaiea.v4i3.1011

Keywords:

Prediction of kWh electricity sales, simple linear regression method, website based.

Abstract

This study presents the development of a web-based system to predict monthly electricity sales (in kWh) in the city of Pontianak using the Simple Linear Regression method. The main objective is to build a system capable of estimating electricity demand for the latest period and projecting the required kWh for the following month. The system uses 24 months of historical electricity sales data as the basis for prediction, allowing it to identify trends and patterns over time. After applying the regression calculation, the system predicted the next month's electricity sales to be 93,394,700 kWh. This result indicates that the system's prediction aligns with historical trends, demonstrating the model's reliability and potential accuracy. The relationship between the independent and dependent variables used in the model is linear and causal, making this method suitable for forecasting electricity consumption. Additionally, the system includes data visualization features on the website to enhance user understanding and simplify analysis. These visual tools help stakeholders to interpret predictions more effectively. Overall, the system serves as a practical and efficient solution to support electricity demand planning, resource management, and decision-making processes for local authorities and energy providers in Pontianak.

Downloads

Download data is not yet available.

References

L. Di and K. Lubuklinggau, “Implementasi Data Mining Prediksi Kebutuhan Tenaga,” vol. 19, no. 2, pp. 197–206, 2020.

N. Nazeriandy, Y. Syahra, and M. Syaifudin, “Penerapan Data Mining Untuk Memprediksi Penggunaan Daya Listrik Pada PT.PLN (Persero) Rayon Medan Selatan Dengan Menggunakan Metode Regresi Linier Berganda,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 20, no. 1, p. 20, 2021, doi: 10.53513/jis.v20i1.2431.

A. Anggrawan, N. Azmi, U. Bumigora, and I. Anthonyangrawan, “Prediksi Penjualan Produk Unilever Menggunakan Metode Regresi Linear,” J. Bumigora Inf. Technol., vol. 4, no. 2, pp. 123–132, 2022, doi: 10.30812/bite.v4i2.2416.

S. Monica and A. Hajjah, “Penerapan regresi linier untuk peramalan penjualan,” J. Tek. Inform. Kaputama, vol. 6, no. 2, pp. 777–779, 2022, [Online]. Available: Binjai

D. Rahmawati, T. Kristanto, B. F. Setya Pratama, and D. B. Abiansa, “Prediksi Pelaku Perjalanan Luar Negeri Di Masa Pandemi COVID-19 Menggunakan Metode Regresi Linier Sederhana,” J. Inf. Syst. Res., vol. 3, no. 3, pp. 338–343, 2022, doi: 10.47065/josh.v3i3.1507.

Y. Aqsho Ramadhan, A. Faqih, and G. Dwilestari, “Prediksi Penjualan Handphone di Toko X menggunakan Algoritma Regresi Linear,” J. Inform. Terpadu, vol. 9, no. 1, pp. 40–44, 2023, doi: 10.54914/jit.v9i1.692.

D. A. Pohan, M. H. Dar, and Irmayanti, “Penerapan Data Mining untuk Prediksi Penjualan Produk Sepatu Terlaris Menggunakan Metode Regresi Linier Sederhana,” J. Nas. Inform. dan Teknol. Jar., vol. 2, pp. 2–6, 2022, [Online]. Available: https://doi.org/10.30743/infotekjar.v6i2.4795

A. Prakarsya and A. Prambayaun, “Implementasi Data Mining Untuk Prediksi Penyebaran Virus Hiv / Aids Di Bandar Lampung,” J. Sist. …, vol. 3, no. 2, pp. 18–26, 2020, [Online]. Available: https://www.ejournal.lembahdempo.ac.id/index.php/SISKOMTI/article/view/120

P. Purwadi, P. S. Ramadhan, and N. Safitri, “Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 18, no. 1, p. 55, 2019, doi: 10.53513/jis.v18i1.104.

G. N. Ayuni and D. Fitrianah, “Penerapan metode Regresi Linear untuk prediksi penjualan properti pada PT XYZ,” J. Telemat., vol. 14, no. 2, pp. 79–86, 2019, [Online]. Available: https://journal.ithb.ac.id/telematika/article/view/321

S. Arfida and B. Waseso, “Pengujian Sistem Prediksi Penjualan Makanan dengan Menggunakan Metode Black-Box,” J. Tek., vol. 16, no. 2, pp. 289–2935, 2022.

A. Zahir, “PENGEMBANGAN MEDIA PEMBELAJARAN LIVE STREAMING PENGETAHUAN KOMPUTER BERBASIS WEBSITE Kata kunci : Media Pembelajaran , Website , Live Streaming,” vol. 9, 2019.

Widi Hastomo, Nur Aini, Adhitio Satyo Bayangkari Karno, and L.M. Rasdi Rere, “Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 131–139, 2022, doi: 10.22146/jnteti.v11i2.2586.

Downloads

Published

2025-06-15

How to Cite

Rido Safaryansyah, Alda Cendekia Siregar, & Istikoma. (2025). Prediction of Electricity kWh Sales in Pontianak City Using Linear Regression Method. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1778–1781. https://doi.org/10.59934/jaiea.v4i3.1011

Issue

Section

Articles