Optimization of Supervised Learning Algorithms for Early Prediction of Heart Attack Risk
DOI:
https://doi.org/10.59934/jaiea.v4i3.1020Keywords:
Early Prediction; Heart Attack Risk; Optimization; Random Forest, Supervised LearningAbstract
Cardiovascular disease, particularly heart attacks, persists as a primary global cause of mortality. Heart attacks arise from an abrupt obstruction of oxygenated blood flow to a segment of the cardiac muscle, resulting in inadequate oxygen supply to the heart. This obstruction may stem from modifiable risk factors, including suboptimal dietary habits, physical inactivity, obesity, and tobacco consumption, alongside non-modifiable factors such as age, sex, and familial predisposition. Contemporary research increasingly focuses on preemptive strategies against heart attacks to mitigate associated mortality rates. One such strategy involves the application of artificial intelligence for predictive modeling of heart attack risk. These models may utilize machine learning algorithms, such as logistic regression, support vector machine, k-nearest neighbors, and random forest, all categorized under supervised learning paradigms. This study undertakes a thorough examination and optimization of diverse supervised learning algorithms for the prospective prediction of heart attack risk. Findings suggest that machine learning algorithms possess utility in predicting heart attack risk, with the random forest model demonstrating a peak accuracy of 64%. Nevertheless, the model's efficacy is constrained by high feature dimensionality, suggesting avenues for refinement via feature dimension reduction techniques and meticulous hyperparameter optimization across the employed machine learning algorithms.
Downloads
References
F. Mohammad and S. Al-Ahmadi, “WT-CNN: A Hybrid Machine Learning Model for Heart Disease Prediction,” Mathematics, vol. 11, no. 22, p. 4681, Nov. 2023, doi: 10.3390/math11224681.
S. Rafi et al., “Out-of-Hospital Cardiac Arrest Detection by Machine Learning Based on the Phonetic Characteristics of the Caller’s Voice,” in Studies in Health Technology and Informatics, vol. 294, 2022, pp. 445–449. doi: 10.3233/SHTI220498.
R. Spencer, F. Thabtah, N. Abdelhamid, and M. Thompson, “Exploring feature selection and classification methods for predicting heart disease,” Digit. Heal., vol. 6, pp. 1–10, Jan. 2020, doi: 10.1177/2055207620914777.
Z. S. Chunawala et al., “Mortality in Patients Hospitalized With Acute Myocardial Infarction Without Standard Modifiable Risk Factors: The ARIC Study Community Surveillance,” J. Am. Heart Assoc., vol. 12, no. 13, Jul. 2023, doi: 10.1161/JAHA.122.027851.
I. Rojek, P. Kotlarz, M. Kozielski, M. Jagodziński, and Z. Królikowski, “Development of AI-Based Prediction of Heart Attack Risk as an Element of Preventive Medicine,” Electronics, vol. 13, no. 2, p. 272, Jan. 2024, doi: 10.3390/electronics13020272.
M. M. Islam, T. N. Tania, S. Akter, and K. H. Shakib, “An Improved Heart Disease Prediction Using Stacked Ensemble Method,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 490 LNICST, 2023, pp. 84–97. doi: 10.1007/978-3-031-34619-4_8.
S. Hussain, S. K. Nanda, S. Barigidad, S. Akhtar, M. Suaib, and N. K. Ray, “Novel Deep Learning Architecture for Predicting Heart Disease using CNN,” in 2021 19th OITS International Conference on Information Technology (OCIT), IEEE, Dec. 2021, pp. 353–357. doi: 10.1109/OCIT53463.2021.00076.
P. Chavda, H. Bhavsar, Y. Pithadia, and R. Kotecha, “Early Detection of Cardiac Disease Using Machine Learning,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.3370813.
N. A. M. Zaini and M. K. Awang, “Hybrid Feature Selection Algorithm and Ensemble Stacking for Heart Disease Prediction,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 2, pp. 158–165, 2023, doi: 10.14569/IJACSA.2023.0140220.
O. S. Hasan and I. A. Saleh, “Development of heart attack prediction model based on ensemble learning,” Eastern-European J. Enterp. Technol., vol. 4, no. 2(112), pp. 26–34, Aug. 2021, doi: 10.15587/1729-4061.2021.238528.
N. E. Almansouri et al., “Early Diagnosis of Cardiovascular Diseases in the Era of Artificial Intelligence: An In-Depth Review,” Cureus, vol. 16, no. 3, pp. 1–18, Mar. 2024, doi: 10.7759/cureus.55869.
P. Iacobescu, V. Marina, C. Anghel, and A.-D. Anghele, “Evaluating Binary Classifiers for Cardiovascular Disease Prediction: Enhancing Early Diagnostic Capabilities,” J. Cardiovasc. Dev. Dis., vol. 11, no. 12, p. 396, Dec. 2024, doi: 10.3390/jcdd11120396.
M. S. Pathan, A. Nag, M. M. Pathan, and S. Dev, “Analyzing the impact of feature selection on the accuracy of heart disease prediction,” Healthc. Anal., vol. 2, p. 100060, Nov. 2022, doi: 10.1016/j.health.2022.100060.
A. Ogunpola, F. Saeed, S. Basurra, A. M. Albarrak, and S. N. Qasem, “Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases,” Diagnostics, vol. 14, no. 2, p. 144, Jan. 2024, doi: 10.3390/diagnostics14020144.
Y. Yazici, “Approaches to Fraud Detection on Credit Card Transactions using Artificial Intelligence Methods,” in Computer Science & Information Technology, AIRCC Publishing Corporation, Jul. 2020, pp. 235–244. doi: 10.5121/csit.2020.101018.
A. Firizkiansah, A. Muhammad, and I. R. Maulana, “Optimasi Klasifikasi Data Teks Menggunakan Algoritma Logistic Regression dengan TF-IDF dan SMOTE,” JIKOMTI J. Ilm. Ilmu Komput. dan Teknol. Inf., vol. 2, no. 1, pp. 29–36, 2025, [Online]. Available: https://ojs.sains.ac.id/index.php/Jikomti/article/view/97/119
A. Firizkiansah, A. Muhammad, and D. Setiawan, “Implementasi Algoritma k-Nearest Neighbor (k-NN) pada Data Ulasan Pelaksanaan Pembelajaran Daring,” JIKOMTI J. Ilm. Ilmu Komput. dan Teknol. Inf., vol. 1, no. 1, pp. 16–23, Dec. 2024, Accessed: Mar. 20, 2025. [Online]. Available: https://ojs.sains.ac.id/index.php/Jikomti/article/view/35/35
J. Nourmohammadi-Khiarak, M.-R. Feizi-Derakhshi, K. Behrouzi, S. Mazaheri, Y. Zamani-Harghalani, and R. M. Tayebi, “New hybrid method for heart disease diagnosis utilizing optimization algorithm in feature selection,” Health Technol. (Berl)., vol. 10, no. 3, pp. 667–678, May 2020, doi: 10.1007/s12553-019-00396-3.
S. Nashif, M. R. Raihan, M. R. Islam, and M. H. Imam, “Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System,” World J. Eng. Technol., vol. 06, no. 04, pp. 854–873, 2018, doi: 10.4236/wjet.2018.64057.
I. Abousaber, H. F. Abdallah, and H. El-Ghaish, “Robust predictive framework for diabetes classification using optimized machine learning on imbalanced datasets,” Front. Artif. Intell., vol. 7, Jan. 2025, doi: 10.3389/frai.2024.1499530.
S. Harford et al., “A machine learning based model for Out of Hospital cardiac arrest outcome classification and sensitivity analysis,” Resuscitation, vol. 138, no. March, pp. 134–140, May 2019, doi: 10.1016/j.resuscitation.2019.03.012.
J. A. C. Sterne et al., “Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls,” BMJ, vol. 338, no. jun29 1, pp. b2393–b2393, Sep. 2009, doi: 10.1136/bmj.b2393.
D. Toddenroth, T. Ganslandt, I. Castellanos, H.-U. Prokosch, and T. Bürkle, “Employing heat maps to mine associations in structured routine care data,” Artif. Intell. Med., vol. 60, no. 2, pp. 79–88, Feb. 2014, doi: 10.1016/j.artmed.2013.12.003.
C. Li, “Preprocessing Methods and Pipelines of Data Mining: An Overview,” no. June, pp. 1–7, Jun. 2019, [Online]. Available: http://arxiv.org/abs/1906.08510
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.