SVM Optimization for Autism Spectrum Disorder Classification: A Comparison of PCA, PSO, and Grid Search

Authors

  • Aura Choirun Nisa Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Basuki Rahmat Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Achmad Junaidi Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.59934/jaiea.v4i3.1044

Keywords:

SVM, PCA, PSO, GridSearch, Autism Spectrum Disorder (ASD)

Abstract

Autism Spectrum Disorder (ASD) is a developmental condition impacting communication and socialization, often manifesting in distinct behaviors. Early detection and timely intervention are crucial for improving the quality of life for individuals with ASD. This research aims to develop an ASD risk classification model using the Support Vector Machine (SVM) algorithm across three age groups: children, adolescents, and adults. To optimize model performance, Principal Component Analysis (PCA) was used for dimensionality reduction, while Particle Swarm Optimization (PSO) and Grid Search were employed for parameter tuning. The study sought to identify the most effective combination of these techniques for autism prediction. Evaluation results indicated that SVM with Grid Search optimization, without PCA, yielded the best performance, achieving 98.2% accuracy and an AUC of 0.997 at an 80:20 data split. Furthermore, Grid Search demonstrated greater computational efficiency compared to PSO. The findings suggest that the integration of SVM and Grid Search offers a promising, accurate, and efficient approach for the early detection of autism.

Downloads

Download data is not yet available.

Author Biography

Basuki Rahmat, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Vice Dean of Computer Science Faculty on Universitas Pembangunan Nasional "Veteran" Jawa Timur

References

F. G. Winarno, Autisme dan Peran Pangan. Jakarta: PT Gramedia Pustaka Utama, 2013.

K. Apeksha, S. Hanasoge, P. Jain, and S. S. Babu, “Speech Perception in Quiet and in the Presence of Noise in Children with Autism Spectrum Disorder: A Behavioral Study,” Indian Journal of Otolaryngology and Head & Neck Surgery, vol. 75, no. 3, pp. 1707–1711, 2023, doi: 10.1007/s12070-023-03721-5.

S. P. Patel et al., “A profile of prosodic speech differences in individuals with autism spectrum disorder and first-degree relatives,” J Commun Disord, vol. 102, Mar. 2023, doi: 10.1016/j.jcomdis.2023.106313.

N. Aisyah Amalia and S. Tjiptorini, “ANALISIS ANAK DENGAN GANGGUAN SPEKTRUM AUTISME (GSA) DI SEKOLAH LUAR BIASA ULAKA PENCA BERDASARKAN DSM V,” 2024.

Z. Muna, Mahdalevia, U. Fatiya, and Hijriati, “Analisis Karakteristik Anak Bekrebutuhan Khusus (Autisme) di Sekolah PAUD Harsya Ceria Banda Aceh,” Journal Of Early Childhood And Islamic Education, vol. 2, no. 2, Jun. 2024.

P. Bawa, V. Kadyan, A. Mantri, and H. Vardhan, “Investigating multiclass autism spectrum disorder classification using machine learning techniques,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 8, Jun. 2024, doi: 10.1016/j.prime.2024.100602.

F. Lumbanraja, F. Lufiana, Y. Heningtyas, and K. Muludi, “IMPLEMENTASI SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PEDERITA DIABETES MELLITUS,” Jurnal Komputasi, vol. 10, Apr. 2022, doi: 10.23960/komputasi.v10i1.2940.

H. Syah and A. Witanti, “ANALISIS SENTIMEN MASYARAKAT TERHADAP VAKSINASI COVID-19 PADA MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 1, Feb. 2022, doi: 10.47080/simika.v5i1.1411.

R. Dasmasela, B. P. Tomasouw, and Z. A. Leleury, “PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) UNTUK MENDETEKSI PENYALAHGUNAAN NARKOBA,” Parameter: Jurnal Matematika, Statistika dan Terapannya, vol. 1, no. 2, Oct. 2022.

E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, Dec. 2021, doi: 10.3390/informatics8040079.

Siti Muawwanah, Taghfirul Azhima Yoga Siswa, and Wawan Joko Pranoto, “Model Optimasi SVM-GSBE dalam Menangani High Dimensional Data Stunting Kota Samarinda,” Jurnal Teknologi Sistem Informasi dan Aplikasi, vol. 7, no. 3, pp. 1246–1258, Jul. 2024, doi: 10.32493/jtsi.v7i3.41545.

B. Adiguzel Mercangoz, Applying Particle Swarm Optimization New Solutions and Cases for Optimized Portfolios: New Solutions and Cases for Optimized Portfolios, 1st ed. Springer Cham, 2021. doi: 10.1007/978-3-030-70281-6.

R. K. Samala, “Particle Swarm Optimization,” in Swarm Intelligence - Recent Advances and Current Applications, M. A. Aceves-Fernández, Ed., Rijeka: IntechOpen, 2023. doi: 10.5772/intechopen.107156.

T. Wiantara and S. Samsuryadi, “Attribute selection and weighting using C4.5 and Particle Swarm Optimization for dementia disease classification ,” Thesis (Undergraduate), Sriwijaya University., 2021.

X. Chen, S. Xu, S. Li, H. He, Y. Han, and X. Qu, “Identification of architectural elements based on SVM with PCA: A case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China,” J Pet Sci Eng, vol. 198, Mar. 2021, doi: 10.1016/j.petrol.2020.108247.

S. Samantaray, A. Sahoo, and A. Agnihotri, “Prediction of Flood Discharge Using Hybrid PSO-SVM Algorithm in Barak River Basin,” MethodsX, vol. 10, Jan. 2023, doi: 10.1016/j.mex.2023.102060.

L. J. Francis, A. B. Sailer, V. J. Payne, and U. McKenna, “Engaging the AQ10 to Predict Professional Burnout or Poor Work-Related Psychological Wellbeing Among Anglican Clergy in Wales,” J Relig Health, vol. 63, no. 2, pp. 1661–1676, Apr. 2024, doi: 10.1007/s10943-024-02006-7.

M. Greenacre, P. J. F. Groenen, T. Hastie, A. I. D’Enza, A. Markos, and E. Tuzhilina, “Principal component analysis,” Nature Reviews Methods Primers, vol. 2, no. 1, p. 100, 2022, doi: 10.1038/s43586-022-00184-w.

M. P. Raghunath et al., “PCA and PSO based optimized support vector machine for efficient intrusion detection in internet of things,” Measurement: Sensors, vol. 37, Feb. 2025, doi: 10.1016/j.measen.2024.101806.

G. Atteia, R. Alnashwan, and M. Hassan, “Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification,” Diagnostics, vol. 13, no. 16, Aug. 2023, doi: 10.3390/diagnostics13162672.

L. H. Shaufee, H. Jantan, U. Fatihah, and M. Bahrin, “Polycystic Ovary Syndrome (PCOS) Prediction System Using PSO-SVM,” Journal of Computing Research and Innovation, vol. 9, no. 1, 2024, doi: 10.24191/jcrinn.v9i1.

D. Saputra, W. S. Dharmawan, and W. Irmayani, “Performance Comparison of the SVM and SVM-PSO Algorithms for Heart Disease Prediction,” International Journal of Advances in Data and Information Systems, vol. 3, no. 2, pp. 74–86, Nov. 2022, doi: 10.25008/ijadis.v3i2.1243.

L. Alaika, “Optimization of Accuracy to Autism Spectrum Disorder Identification for Children Using Support Vector Machine and Correlation-based Feature Selection,” Journal of Advances in Information Systems and Technology, vol. 4, no. 1, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/jaist

Jumanto et al., “Optimizing Support Vector Machine Performance for Parkinson’s Disease Diagnosis Using GridSearchCV and PCA-Based Feature Extraction,” Journal of Information Systems Engineering and Business Intelligence, vol. 10, no. 1, pp. 38–50, Feb. 2024, doi: 10.20473/jisebi.10.1.38-50.

A. Manik, E. B. Nababan, and Tulus, “IMPROVED SUPPORT VECTOR MACHINE PERFORMANCE USING PARTICLE SWARM OPTIMIZATION IN CREDIT RISK CLASSIFICATION,” JUTIF : Jurnal Teknik Informatika, vol. 3, no. Vol. 3 No. 6 (2022): JUTIF Volume 3, Number 6, December 2022, pp. 1739–1746, Dec. 2022, doi: https://doi.org/10.20884/1.jutif.2022.3.6.615.

Downloads

Published

2025-06-15

How to Cite

Choirun Nisa, A., Rahmat, B., & Junaidi, A. (2025). SVM Optimization for Autism Spectrum Disorder Classification: A Comparison of PCA, PSO, and Grid Search. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1900–1906. https://doi.org/10.59934/jaiea.v4i3.1044

Issue

Section

Articles