House Price Prediction Analysis Using Linear Regression and Random Forest Algorithms
DOI:
https://doi.org/10.59934/jaiea.v4i3.1047Keywords:
House Price Prediction, Linear Regression, Random ForestAbstract
This study aims to analyze house price prediction using two machine learning algorithms: Linear Regression and Random Forest. Quantitative evaluation is conducted using four main metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R² Score, and Mean Absolute Percentage Error (MAPE). The experimental results show that the Random Forest model outperforms Linear Regression in all four evaluation metrics. The MAE and RMSE of the Random Forest model are lower, indicating that this model is more effective in minimizing prediction errors. Additionally, the higher R² Score demonstrates the model's better ability to explain house price variance, while the smaller MAPE indicates more accurate prediction errors in the context of real estate. These findings suggest that choosing the right algorithm is crucial for modeling complex house price data, and although Random Forest is more accurate, its black-box nature limits interpretability. Therefore, for future research, more interpretable methods such as XGBoost with SHAP analysis could be considered.
Downloads
References
Arizqi, R., & Prasetyo, H. (2022). Analisis prediksi harga rumah di Bandung menggunakan regresi linear berganda. Journal of Computer Science Research, 6(1). https://ejurnal.politeknikpratama.ac.id/index.php/jcsr/article/download/3038/2873
Brownlee, J. (2023, December 6). Linear regression for machine learning. Machine Learning Mastery. Retrieved from https://machinelearningmastery.com/linear-regression-for-machine-learning/
Fu, Y. (2024). A comparative study of house price prediction using linear regression and random forest models. Highlights in Science, Engineering and Technology, 107, 96–103. https://doi.org/10.54097/vcy5n584
Guna, R., & Sudiarta, I. M. (2023). Uji performansi algoritma LR dan RFR pada implementasi sistem prediksi harga rumah. Jurnal Nasional Teknologi Informasi dan Aplikasinya, 6(3). https://ojs.unud.ac.id/index.php/jnatia/article/download/102444/50654
Khoirudin, A., & Wahyuningtyas, D. (2022). Penerapan Random Forest Regression untuk memprediksi harga jual rumah dan Cosine Similarity untuk rekomendasi rumah di Provinsi Jawa Barat. Jurnal Coding, 10(1). https://www.neliti.com/publications/569157/download
Kurniawan, A. D., & Wijaya, T. (2022). Implementasi machine learning untuk prediksi harga rumah menggunakan algoritma Random Forest. Computatio: Journal of Computer Science, 9(2) https://journal.untar.ac.id/index.php/computatio/article/download/15173/17830/89193
Lewinson, E. (2023, April 20). A comprehensive overview of regression evaluation metrics. NVIDIA Developer Blog. Retrieved from https://developer.nvidia.com/blog/a-comprehensive-overview-of-regression-evaluation-metrics/
Montoya, A., & DataCanary. (2016). House Prices – Advanced Regression Techniques [Data set]. Kaggle. https://www.kaggle.com/c/house-prices-advanced-regression-techniques
Novianto, D., & Andhika, M. (2021). Prediksi harga rumah menggunakan machine learning algoritma linear regression. Jurnal Teknik Elektro dan Sistem Informasi, 8(2). https://jurnal.unidha.ac.id/index.php/jteksis/article/download/1732/953/
Rachman, A., & Nugroho, D. (2022). Analisis prediksi harga rumah sesuai spesifikasi menggunakan multiple linear regression. Jurnal Informatika UPNVJ, 8(1). https://ejournal.upnvj.ac.id/informatik/article/download/3635/1498/10600
Rambe, Y., & Siregar, R. A. (2022). Prediksi harga rumah di Jakarta Pusat menggunakan algoritma General Regression Neural Network. Jurnal Ilmu Komputer dan Bisnis, 5(2). https://www.stmikdharmapalariau.ac.id/ojs/index.php/jikb/article/view/840/633
scikit-learn developers. (2025). 3.4 Metrics and scoring: quantifying the quality of predictions. In Scikit-learn documentation (version 1.6.1). Retrieved from https://scikit-learn.org/stable/modules/model_evaluation.html
Wahyuni, R., & Hidayat, M. (2023). Pendekatan machine learning untuk estimasi harga rumah berdasarkan fitur properti. Jurnal ALPHA: Jurnal Teknik dan Sains, 1(2). https://ejournal.publine.or.id/index.php/alpha/article/download/99/104
Ye, Q. (2024). House price prediction using machine learning for Ames, Iowa. Applied and Computational Engineering, 55(1), 44–54. https://doi.org/10.54254/2755-2721/55/20241483
Yu, J. (2023). Prediction on housing price based on the data on Kaggle. In Z. Zeng et al. (Eds.), Atlantis Highlights in Engineering: Proceedings of the 2022 3rd International Conference on E-Commerce and Internet Technology (ECIT 2022) (Vol. 11, pp. 627–634). Atlantis Press. https://doi.org/10.2991/978-94-6463-005-3_64
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.