House Price Prediction Analysis Using Linear Regression and Random Forest Algorithms

Authors

  • Hanspran Limbong Universitas Islam Negeri Sumatera Utara
  • Mufti Alwisyah Lubis Universitas Islam Negeri Sumatera Utara
  • Mhd. Furqan Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.59934/jaiea.v4i3.1047

Keywords:

House Price Prediction, Linear Regression, Random Forest

Abstract

This study aims to analyze house price prediction using two machine learning algorithms: Linear Regression and Random Forest. Quantitative evaluation is conducted using four main metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R² Score, and Mean Absolute Percentage Error (MAPE). The experimental results show that the Random Forest model outperforms Linear Regression in all four evaluation metrics. The MAE and RMSE of the Random Forest model are lower, indicating that this model is more effective in minimizing prediction errors. Additionally, the higher R² Score demonstrates the model's better ability to explain house price variance, while the smaller MAPE indicates more accurate prediction errors in the context of real estate. These findings suggest that choosing the right algorithm is crucial for modeling complex house price data, and although Random Forest is more accurate, its black-box nature limits interpretability. Therefore, for future research, more interpretable methods such as XGBoost with SHAP analysis could be considered.

Downloads

Download data is not yet available.

References

Arizqi, R., & Prasetyo, H. (2022). Analisis prediksi harga rumah di Bandung menggunakan regresi linear berganda. Journal of Computer Science Research, 6(1). https://ejurnal.politeknikpratama.ac.id/index.php/jcsr/article/download/3038/2873

Brownlee, J. (2023, December 6). Linear regression for machine learning. Machine Learning Mastery. Retrieved from https://machinelearningmastery.com/linear-regression-for-machine-learning/

Fu, Y. (2024). A comparative study of house price prediction using linear regression and random forest models. Highlights in Science, Engineering and Technology, 107, 96–103. https://doi.org/10.54097/vcy5n584

Guna, R., & Sudiarta, I. M. (2023). Uji performansi algoritma LR dan RFR pada implementasi sistem prediksi harga rumah. Jurnal Nasional Teknologi Informasi dan Aplikasinya, 6(3). https://ojs.unud.ac.id/index.php/jnatia/article/download/102444/50654

Khoirudin, A., & Wahyuningtyas, D. (2022). Penerapan Random Forest Regression untuk memprediksi harga jual rumah dan Cosine Similarity untuk rekomendasi rumah di Provinsi Jawa Barat. Jurnal Coding, 10(1). https://www.neliti.com/publications/569157/download

Kurniawan, A. D., & Wijaya, T. (2022). Implementasi machine learning untuk prediksi harga rumah menggunakan algoritma Random Forest. Computatio: Journal of Computer Science, 9(2) https://journal.untar.ac.id/index.php/computatio/article/download/15173/17830/89193

Lewinson, E. (2023, April 20). A comprehensive overview of regression evaluation metrics. NVIDIA Developer Blog. Retrieved from https://developer.nvidia.com/blog/a-comprehensive-overview-of-regression-evaluation-metrics/

Montoya, A., & DataCanary. (2016). House Prices – Advanced Regression Techniques [Data set]. Kaggle. https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Novianto, D., & Andhika, M. (2021). Prediksi harga rumah menggunakan machine learning algoritma linear regression. Jurnal Teknik Elektro dan Sistem Informasi, 8(2). https://jurnal.unidha.ac.id/index.php/jteksis/article/download/1732/953/

Rachman, A., & Nugroho, D. (2022). Analisis prediksi harga rumah sesuai spesifikasi menggunakan multiple linear regression. Jurnal Informatika UPNVJ, 8(1). https://ejournal.upnvj.ac.id/informatik/article/download/3635/1498/10600

Rambe, Y., & Siregar, R. A. (2022). Prediksi harga rumah di Jakarta Pusat menggunakan algoritma General Regression Neural Network. Jurnal Ilmu Komputer dan Bisnis, 5(2). https://www.stmikdharmapalariau.ac.id/ojs/index.php/jikb/article/view/840/633

scikit-learn developers. (2025). 3.4 Metrics and scoring: quantifying the quality of predictions. In Scikit-learn documentation (version 1.6.1). Retrieved from https://scikit-learn.org/stable/modules/model_evaluation.html

Wahyuni, R., & Hidayat, M. (2023). Pendekatan machine learning untuk estimasi harga rumah berdasarkan fitur properti. Jurnal ALPHA: Jurnal Teknik dan Sains, 1(2). https://ejournal.publine.or.id/index.php/alpha/article/download/99/104

Ye, Q. (2024). House price prediction using machine learning for Ames, Iowa. Applied and Computational Engineering, 55(1), 44–54. https://doi.org/10.54254/2755-2721/55/20241483

Yu, J. (2023). Prediction on housing price based on the data on Kaggle. In Z. Zeng et al. (Eds.), Atlantis Highlights in Engineering: Proceedings of the 2022 3rd International Conference on E-Commerce and Internet Technology (ECIT 2022) (Vol. 11, pp. 627–634). Atlantis Press. https://doi.org/10.2991/978-94-6463-005-3_64

Downloads

Published

2025-06-15

How to Cite

Limbong, H., Lubis, M. A. ., & Mhd. Furqan. (2025). House Price Prediction Analysis Using Linear Regression and Random Forest Algorithms. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1928–1933. https://doi.org/10.59934/jaiea.v4i3.1047

Issue

Section

Articles