Literature Review of Earthquake Clustering Algorithms in Indonesia
DOI:
https://doi.org/10.59934/jaiea.v4i3.1072Keywords:
Clustering, Earthquake, Indonesia, Literature Review, Machine LearningAbstract
This study presents a structured literature review, often referred to as a Systematic Literature Review (SLR), based on 18 articles discussing clustering methods. The primary aim of this study is to explore how clustering techniques have been applied to earthquake data in Indonesia. To achieve this, the study addresses four key research questions. First, it examines which algorithms are most commonly used for earthquake clustering in Indonesia. Second, it evaluates which algorithms demonstrate the best performance. Third, it investigates which regions within Indonesia are most frequently studied in this context. Finally, it analyzes the types of datasets that are most often utilized for earthquake clustering in the country. The findings indicate that the K-Means algorithm is not only the most frequently used but also consistently shows strong performance. In addition, earthquake clustering studies most commonly focus on Indonesia as a whole, using publicly available datasets. These insights offer valuable guidance for researchers seeking to apply or further develop clustering methods for earthquake-related studies in Indonesia.
Downloads
References
D. R. Adji et al., “Metode dan Algoritma Dalam Data Clustering : Systematic Literature Review,” Sci. Technol. Manag. J., vol. 5, no. 1, pp. 1–4, 2025.
A. Wahyu and R. Rushendra, “Klasterisasi Dampak Bencana Gempa Bumi Menggunakan Algoritma K-Means di Pulau Jawa,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, p. 174, 2022.
I. M. Faiza, G. Gunawan, and W. Andriani, “Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning untuk Deteksi Bencana Banjir,” J. Minfo Polgan, vol. 11, no. 2, pp. 59–63, 2022.
Sekar Setyaningtyas, B. Indarmawan Nugroho, and Z. Arif, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” J. Teknoif Tek. Inform. Inst. Teknol. Padang, vol. 10, no. 2, pp. 52–61, 2022.
P. Sari, E. Efan, and R. Syahri, “Algoritma K-Means Clustering : Sebuah Studi Literatur K-Means Clustering Algorithm : a Literatur Study,” J. Inform., vol. x, no. x, pp. 1–7, 2023.
A. Prasetio, M. M. Effendi, and M. N. Dwi M, “Analisis Gempa Bumi Di Indonesia Dengan Metode Clustering,” Bull. Inf. Technol., vol. 4, no. 3, pp. 338–343, 2023.
L. Y. Baisa, D. Manongga, and Y. Nataliani, “Analisis Klasterisasi Kerawanan Gempa Bumi di Provinsi Papua Menggunakan Algoritma Invasive Weed Optimization (IWO),” J. Edukasi dan Penelit. Inform., vol. 9, no. 2, p. 176, 2023.
R. M. Taufiq, R. Firdaus, F. Handayani, P. F. Muarif, and R. R. Rizqy, “Density-Based Clustering untuk Pemetaan Daerah Rawan Gempa Bumi di Wilayah Sumatera Barat Menggunakan Metode DBSCAN,” J. FASILKOM, vol. 14, no. 3, pp. 817–822, 2024.
M. Ubaidillah and Z. Fatah, “IMPLEMENTASI RAPIDMINER PADA KLASTERISASI GEMPA BUMI DI INDONESIA BERDASARKAN KEDALAMAN MENGGUNAKAN K-MEANS,” J. Ilm. MULTIDISIPLIN ILMU, vol. 1, no. 6, pp. 84–91, 2024.
D. Kurmiati, M. Zakiy Fauzi, and A. Falegas, “Klasterisasi Daerah Rawan Gempa Bumi di Indonesia Menggunakan Algoritma K-Medoids,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. April, pp. 47–57, 2021.
J. Inayah, A. Fanani, and W. D. Utami, “Klasterisasi Data Kejadian Gempa Bumi di Indonesia Menggunakan Metode K-Medoids,” JUSTIN (Jurnal Sist. dan Teknol. Informasi), vol. 12, no. 2, pp. 271–276, 2024.
I. N. Setiawan, D. Krismawati, S. Pramana, and E. Tanur, “Klasterisasi Wilayah Rentan Bencana Alam Berupa Gerakan Tanah Dan Gempa Bumi Di Indonesia,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 669–676, 2022.
W. Gunawan and A. Wibowo, “Pemanfaatan Algoritma K-Means dalam Klasterisasi Gempa Sulawesi,” Fakt. Exacta, vol. 17, no. 3, pp. 228–240, 2024.
N. Dwitiyanti, S. Ayu Kumala, and S. Dwi Handayani, “PENERAPAN METODE K-MEANS PADA KLASTERISASI WILAYAH RAWAN GEMPA DI INDONESIA Implementation of K-Means Method in Classterization of Earthquake Prone Areas in Indonesia,” Pros. Semin. Nas. UNIMUS, vol. 6, pp. 1029–1037, 2023.
W. Anggraeni, “Analisis Pengelompokan Gempa Bumi di Indonesia Berdasarkan Ruang-Waktu-Kekuatan Kedalaman,” Nucleus, vol. 4, no. 2, pp. 136–160, 2024.
S. Putriana, E. Ernawati, and D. Andreswari, “Clustering Data Titik Gempa Dengan Metode Fuzzy Possibilistic C-Means (Studi Kasus: Titik Gempa Pulau Sumatera Tahun 2013- 2018),” Rekursif J. Inform., vol. 9, no. 1, 2021.
M. Agustina and Mulyawan, “Implementasi Algoritma K-Means pada Peristiwa Gempa Bumi di Wilayah Jawa Barat,” J. Wahana Inform., vol. 2, no. 2, pp. 257–264, 2023.
W. Ajitomo and I. Pratama, “Penerapan Metode Dbscan untuk Identifikasi Kluster Gempa Bumi di Daerah Yogyakarta,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 40–46, 2024.
D. J. Manalu, R. Rahmawati, and T. Widiharih, “PENGELOMPOKAN TITIK GEMPA DI PULAU SULAWESI MENGGUNAKAN ALGORITMA ST-DBSCAN (Spatio Temporal-Density Based Spatial Clustering Application with Noise),” J. Gaussian, vol. 10, no. 4, pp. 554–561, 2021.
A. R. Samsudin, D. H. Fudholi, and L. Iswari, “Temporal Spatial Property Profiling and Identification of Earthquake Prone Areas Using St-Dbscan and K-Means Clustering,” J. Tek. Inform., vol. 5, no. 3, pp. 917–929, 2024.
K. Kertanah, A. Chintyana, C. Chandrawati, M. Rosiana, and N. Putri, “A Study of Grouping of Earthquake Damage from Magnitude Scale in Lombok Using K-Means Modeling,” Kappa J., vol. 8, no. 3, pp. 399–403, 2024.
M. Bariklana and A. Fauzan, “Implementation of the Dbscan Method for Cluster Mapping of Earthquake Spread Location,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 2, pp. 0867–0878, 2023.
M. B. Siahaan and A. R. Rio, “Agglomerative Clustering of 2022 Earthquakes in North Sulawesi, Indonesia,” Buana Inf. Technol. Comput. Sci. (BIT CS, vol. 4, no. 2, pp. 76–84, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.