Prediction of the Air Quality Index in DKI Jakarta Province Using the CatBoost Method

Authors

  • Yoga Dwi Prasetyo Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Fitria Nur Rahmadani Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Mohammad Idhom Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Trimono Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.59934/jaiea.v4i3.1103

Keywords:

Air Pollution, CatBoost, Classification, ISPU, Ruled-based System

Abstract

Air pollution in major cities like Jakarta continues to worsen due to various contributing factors, including unregulated industrial emissions, open waste burning, and the increasing number of private vehicles. This study aims to classify air quality levels based on the Air Pollution Standard Index (ISPU) using the CatBoost Classifier algorithm. The dataset comprises ISPU data from 2021 to 2024 sourced from Jakarta's public data portal, including parameters such as PM10, PM2.5, SO2, CO, O3, and NO2. After preprocessing and feature selection, the model was trained and evaluated using standard classification metrics. The CatBoost Classifier achieved high performance in major categories like “BAIK”, “SEDANG”, and “TIDAK SEHAT” with F1-scores exceeding 0.94. However, the “SANGAT TIDAK SEHAT” category could not be predicted accurately due to class imbalance. To address this, a hybrid model incorporating rule-based logic was employed, enabling accurate classification in the case of extreme pollution. The model also offers station-level predictions, supporting spatial analysis and early warning systems. The results demonstrate that the proposed approach provides a robust framework for air quality classification and real-time environmental monitoring.

Downloads

Download data is not yet available.

References

Nababan, A. A., Jannah, M., Aulina, M., & Andrian, D. (2023). Prediksi Kualitas Udara Menggunakan Xgboost Dengan Synthetic Minority Oversampling Technique (Smote) Berdasarkan Indeks Standar Pencemaran Udara (Ispu). JTIK (Jurnal Teknik Informatika Kaputama), 7(1), 214-219.

Kementerian Lingkungan Hidup dan Kehutanan (KLHK). (2020). Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 14 Tahun 2020 tentang Baku Mutu Udara Ambien. Jakarta: KLHK.

Amalia, A., Zaidiah, A., & Isnainiyah, I. N. (2022). Prediksi kualitas udara menggunakan algoritma K-Nearest Neighbor. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 7(2), 496-507.

Kirono, A. A. H., Asror, I., & Wibowo, Y. F. A. (2022). Klasifikasi Tingkat Kualitas Udara Dki Jakara Dengan Algoritma Naive Bayes. eProceedings of Engineering, 9(3).

Triwibowo, D. N., Ashari, I. A., Sandi, A. S., & Rahman, Y. F. (2021). Enkripsi Pesan Menggunakan Algoritma Linear Congruential Generator (LCG) dan Konversi Kode Morse. Buletin Ilmiah Sarjana Teknik Elektro, 3(3), 194-201.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449.

Downloads

Published

2025-06-15

How to Cite

Yoga Dwi Prasetyo, Fitria Nur Rahmadani, Mohammad Idhom, & Trimono. (2025). Prediction of the Air Quality Index in DKI Jakarta Province Using the CatBoost Method. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 2101–2105. https://doi.org/10.59934/jaiea.v4i3.1103

Issue

Section

Articles