User Acceptance Analysis of AI GROK on Platform X
DOI:
https://doi.org/10.59934/jaiea.v4i3.1107Keywords:
Artificial Intelligence; AI Grok; Platform X; Technology Acceptance ModelAbstract
Significant changes have been brought about by advancements in artificial intelligence (AI) to digital platforms, including social media. One of the latest innovations is the integration of GROK AI into Platform X, designed to enhance user interaction, productivity, and the overall user experience. This study uses the Technology Acceptance Model (TAM) to examine user acceptance of AI GROK, focusing on four main factors: perceived ease of use, perceived usefulness, user attitude and intention to continue using the feature. Data were collected via a questionnaire distributed to active Platform X users who had interacted with GROK AI. The findings aim to provide insights into user perceptions and behaviour to support the development of more effective and user-centric AI features. This research is expected to benefit developers, digital service providers and other stakeholders involved in improving AI integration.
Downloads
References
K. Wangsa, S. Karim, E. Gide, and M. Elkhodr, ‘A Systematic Review and Comprehensive Analysis of Pioneering AI Chatbot Models from Education to Healthcare: ChatGPT, Bard, Llama, Ernie and Grok’, Future Internet, vol. 16, no. 7, p. 219, Jun. 2024, doi: 10.3390/fi16070219.
N. L. Rane, S. P. Choudhary, and J. Rane, ‘Acceptance of artificial intelligence: key factors, challenges, and implementation strategies’, Sep. 2024.
O. S. Falebita and P. J. Kok, ‘Artificial Intelligence Tools Usage: A Structural Equation Modeling of Undergraduates’ Technological Readiness, Self-Efficacy and Attitudes’, J. STEM Educ. Res., vol. 8, no. 2, pp. 257–282, Apr. 2025, doi: 10.1007/s41979-024-00132-1.
M. Edson de Carvalho Souza, ‘Grok, Gemini, ChatGPT and DeepSeek: Comparison and Applications in Conversational Artificial Intelligence’, Feb. 2025, doi: 10.5281/ZENODO.14885243.
C. Graham and R. Stough, ‘Consumer perceptions of AI chatbots on Twitter (X) and Reddit: an analysis of social media sentiment and interactive marketing strategies’, J. Res. Interact. Mark., Jan. 2025, doi: 10.1108/JRIM-05-2024-0237.
A. Leschanowsky, S. Rech, B. Popp, and T. Bäckström, ‘Evaluating Privacy, Security, and Trust Perceptions in Conversational AI: A Systematic Review’, Comput. Hum. Behav., vol. 159, p. 108344, Oct. 2024, doi: 10.1016/j.chb.2024.108344.
F. F. E. Putri and J. Very, ‘Extending the Technology Acceptance Model (TAM) in E- Commerce: The Impact of AI Awareness, Usability, and Trust on Shopee Adoption’, YUME J. Manag., vol. 8, no. 2, p. 10, 2025.
A. S. Wijayanti, A. Faroqi, and D. Ridwandono, ‘Peran Kepercayaan dalam Kesadaran, Penerimaan, dan Adopsi Teknologi AI di Pendidikan Tinggi: Analisis dengan Model TAM Modifikasi’, J. Pendidik. Dan Teknol. Indones. JPTI, vol. 5, no. 4, p. 17, Apr. 2025, doi: https://doi.org/10.52436/1.jpti.784.
F. D. Davis, ‘Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology’, MIS Q., vol. 13, no. 3, p. 319, Sep. 1989, doi: 10.2307/249008.
Jam’an, ‘Penerapan Teori Technology Acceptance Model dalam Perilaku Pengguna Teknologi Internet (Studi Perilaku dalam Menerima Teknologi Internet)’, J. Manaj. Perbank. Keuang. Nitro, vol. 3, no. 2, p. 13, Jul. 2020.
S. R. Wicaksono, ‘Teori Dasar Technology Acceptance Model’, Dec. 02, 2022, Zenodo. doi: 10.5281/ZENODO.7754254.
V. C. Monarike and D. Krisbiantoro, ‘ANALISIS KEPUASAN MAHASISWA TERHADAP APLIKASI ZOOM CLOUD MEEETING MENGGUNAKAN MODEL PENDEKATAN TECHNOLOGY ACCEPTANCE MODEL (TAM) (STUDI KASUS: MAHASISWA UNIVERSITAS AMIKOM PURWOKERTO)’, vol. 4, no. 1, 2022.
M. R. Hasan, N. I. Chowdhury, M. H. Rahman, M. A. B. Syed, and J. Ryu, ‘Understanding AI Chatbot adoption in education: PLS-SEM analysis of user behavior factors’, Comput. Hum. Behav. Artif. Hum., vol. 2, no. 2, p. 100098, Aug. 2024, doi: 10.1016/j.chbah.2024.100098.
U. K. Nisa and N. A. Solekah, ‘The Influence of TAM, Social influence, Security Relationship toward Intention to Use E Wallet through Attitude and Trust’, IQTISHODUNA, vol. 18, no. 1, pp. 35–50, Apr. 2022, doi: 10.18860/iq.v18i1.12916.
P. Wiprayoga and K. I. G. N. J. A. Widagda, ‘THE ROLE OF ATTITUDE TOWARD USING MEDIATES THE INFLUENCE OF PERCEIVED USEFULNESS AND PERCEIVED EASE OF USE ON BEHAVIORAL INTENTION TO USE’, Russ. J. Agric. Socio-Econ. Sci., vol. 140, no. 8, pp. 53–68, Aug. 2023, doi: 10.18551/rjoas.2023-08.06.
S. M. G. Dr. A. Ameer Hussian, Dr. N. Nethravathi, ‘Understanding AI Adoption: The Mediating Role of Attitude in User Acceptance’, J. Inform. Educ. Res., vol. 4, no. 2, May 2024, doi: 10.52783/jier.v4i2.975.
R. Ananda and M. Fadhli, Statistik Pendidikan (Teori dan Praktik Pendidikan). CV. Widya Puspita, 2018.
P. R. Sihombing and A. M. Arsani, Aplikasi SmartPLS Untuk Statistisi Pemula. PT Dewangga Energi Internasional Anggota IKAPI (403/JBA/2021), 2022.
M. K. Fatha, R. K. Sari, M. A. Dewi, and V. Purba, ‘ANALISIS PENERIMAAN APLIKASI HUMATA.AI PADA MAHASISWA MENGGUNAKAN MODEL UTAUT 2’, Pros. Semin. Nas. Teknol. Dan Sist. Inf. SITASI, Aug. 2024.
N. C. Nisa, S. Z. Putra, I. T. Al Azhiim, and A. Wulansari, ‘ANALISIS PENERIMAAN PELAJAR TERHADAP PENGGUNAAN PAHAMIFY MENGGUNAKAN METODE TAM’, Pros. Semin. Nas. Teknol. Dan Sist. Inf. SITASI, 2024.
I. Elfirdaus, T. L. M. Suryanto, and A. Pratama, ‘EVALUASI PENERIMAAN MAHASISWA TERHADAP PENGGUNAAN APLIKASI PERPLEXITY SEBAGAI PENUNJANG PEMBELAJARAN MENGGUNAKAN SIMPLIFIKASI TECHNOLOGY ACCEPTANCE MODEL (TAM)’, J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4803.
R. F. Denovan and E. G. Marsasi, ‘Perceived Ease Of Use, Perceived Usefulness And Satisfaction To Maximize Behavioral Intention With The Technology Acceptance Model In Generation Y And Z Consumers’, J. Pamator J. Ilm. Univ. Trunojoyo, vol. 18, no. 1, pp. 1–36, Mar. 2025, doi: 10.21107/pamator.v18i1.29461.
Md. M. Rana, M. S. Siddiqee, Md. N. Sakib, and Md. R. Ahamed, ‘Assessing AI adoption in developing country academia: A trust and privacy-augmented UTAUT framework’, Heliyon, vol. 10, no. 18, p. e37569, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37569.
K. S. Taber, ‘The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education’, Res. Sci. Educ., vol. 48, no. 6, pp. 1273–1296, Dec. 2018, doi: 10.1007/s11165-016-9602-2.
A. A. Olaniyi, ‘Application of Likert Scale’s Type and Cronbach’s Alpha Analysis in an Airport Perception Study’, Sch. J. Appl. Sci. Res., vol. 2, no. 4, p. 5, 2019.
A. Dabbagh, H. Seens, J. Fraser, and J. C. MacDermid, ‘Construct validity and internal consistency of the Home and Family Work Roles Questionnaires: a cross-sectional study with exploratory factor analysis’, BMC Womens Health, vol. 23, no. 1, p. 56, Feb. 2023, doi: 10.1186/s12905-023-02199-1.
F. Ibrahim, J.-C. Münscher, M. Daseking, and N.-T. Telle, ‘The technology acceptance model and adopter type analysis in the context of artificial intelligence’, Front. Artif. Intell., vol. 7, p. 1496518, Jan. 2025, doi: 10.3389/frai.2024.1496518.
N. V. Dinh and N. T. Khiem, ‘Factors Affecting Business Performance of Small and Medium Enterprises in the Mekong Delta Region of Vietnam’, J. Inf. Syst. Eng. Manag., vol. 10, no. 27, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.