Analysis of User Comment Sentiment on the Siwaslu Application Using the Naive Bayes Method

Authors

  • Diva Rizky Azzami Universitas Buana Perjuangan Karawang
  • Baenil Huda Universitas Buana Perjuangan Karawang
  • Agustia Hananto Universitas Buana Perjuangan Karawang
  • Tukino Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.59934/jaiea.v4i3.1132

Keywords:

sentiment analysis; siwaslu application; naive bayes; text preprocessing; tf-idf

Abstract

This study aims to identify sentiment in user comments on the Siwaslu application by utilizing the Naive Bayes model. The Siwaslu application itself is a digital platform developed to support election supervision, with the aim that the public can provide input that can be used to improve the quality of the application's services. The data analyzed consisted of 2,926 comments that had gone through the pre-processing stage, such as converting text to lowercase, removing punctuation and stopwords, and implementing stemming using the Literary algorithm. After that, the text features are extracted using the method (TF-IDF) and then fed into the Naive Bayes classification model. The results of the evaluation showed that from the overall data, as many as 1,642 comments were classified as negative and another 1,284 as positive. The Naive Bayes classification model used succeeded in providing an accuracy of 88%, with a precision of 0.84 in the negative class and 0.94 in the positive class. The resulting F1-score is 0.90 for the negative class and 0.85 for the positive class, respectively. Overall, these results show that the Naive Bayes model is quite effective in analyzing sentiment and can make a real contribution to efforts to improve the quality of Siwaslu application services in the future.

Downloads

Download data is not yet available.

References

L. Choirunnisa Et Al., “Sosio Yustisia : Jurnal Hukum Dan Perubahan Sosial Peran Sistem Pemerintah Berbasis Elektronik (Spbe) Dalam Meningkatkan Aksesibilitas Pelayanan Publik Di Indonesia,” Mei, Vol. 3, No. 1, 2023.

K. Khatimah, V. Selvia, A. Sugiyarti, M. Gilang Maulana, And M. Luthfi Setiarno Putra, “Vox Populi Pengaruh Media Sosial Terhadap Partisipasi Politik Dan Demokrasi Di Indonesia,” Vol. 7, No. 2, Pp. 128–143, 2024.

M. A. Materu, H. Wijayanto, And S. Prasetyo, “Strategi Pengawasan Bawaslu Dalam Pemilu 2024,” 2023. [Online]. Available: Http://Journal.Uta45jakarta.Ac.Id/Index.Php/Admpublik/Iex

E. Annas Asmara, M. Afiffudin, T. B. Kurniawan, And E. Suryanegara, “Validation Of Vote Counting Supervision Based On Vote Tally At West Bangka District,” 2022.

N. Suarna And W. Prihartono, “Penerapan Nlp (Natural Language Processing) Dalam Analisis Sentimen Pengguna Telegram Di Playstore,” 2024.

R. A. Husen, R. Astuti, L. Marlia, R. Rahmaddeni, And L. Efrizoni, “Analisis Sentimen Opini Publik Pada Twitter Terhadap Bank Bsi Menggunakan Algoritma Machine Learning,” Malcom: Indonesian Journal Of Machine Learning And Computer Science, Vol. 3, No. 2, Pp. 211–218, Oct. 2023, Doi: 10.57152/Malcom.V3i2.901.

J. Ekonomi, H. Suryani Fitri, H. Abrianto, A. Alifa Ramadhani, L. Kresna Dewanti, And P. Wahyu Jatiningrum, “Efisiensi Bank Umum Dengan Pendekatan Data Envelopment Analysis (Dea) Untuk Mewujudkan Green Banking Di Indonesia,” Vol. 07, No. 01, P. 2025, Doi: 10.55352/Ekis.

D. Pengelolaan Tanaman Secara Efisien Mulyadi, Z. Khairil Simbolon, And J. Teknologi Informasi Dan Komputer Politeknik Negeri Lhokseumawe, “Proceeding Seminar Nasional Politeknik Negeri Lhokseumawe”.

S. Mutmainah And E. Eka Citra, “Improving The Accuracy Of Social Media Sentiment Classification With The Combination Of Tf-Idf Method And Random Forest Algorithm,” Journix: Journal Of Informatics And Computing, Vol. 1, No. 1, 2025, Doi: 10.63866/Journix.V1i1.2.

N. Hidayah, “8 | Implementasi Algoritma Multinomial Naïve Bayes, Tf-Idf Dan Confusion Matrix Dalam Pengklasifikasian Saran Monitoring Dan … Implementasi Algoritma Multinomial Naïve Bayes, Tf-Idf Dan Confusion Matrix Dalam Pengklasifikasian Saran Monitoring Dan Evaluasi Mahasiswa Terhadap Dosen Teknik Informatika Universitas Dayanu Ikhsanuddin,” Jurnal Akademik Pendidikan Matematika, Vol. 10, No. 1, 2024, Doi: 10.55340/Japm.V10i1.1491.

W. L. Azzahra And E. Mailoa, “Analisis Sentimen Terhadap Rsud Salatiga Menggunakan Svm Dan Tf-Idf,” 2025. [Online]. Available: Https://Journal.Stmiki.Ac.Id

I. Kurniawan Et Al., “Perbandingan Algoritma Naive Bayes Dan Svm Dalam Sentimen Analisis Marketplace Pada Twitter,” Jurnal Teknik Informatika Dan Sistem Informasi, Vol. 10, No. 1, 2023, [Online]. Available: Http://Jurnal.Mdp.Ac.Id

D. Darwis, N. Siskawati, And Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” Vol. 15, No. 1.

M. Helmi Fauzi, B. Huda, E. Novalia, And U. Buana Perjuangan Karawang Karawang, “Analisis Sentimen User Experience Menggunakan Naive Bayes Dan Design Thinking Pada Aplikasi Sipt,” Remik: Riset Dan E-Jurnal Manajemen Informatika Komputer, Vol. 9, No. 2, 2025, Doi: 10.33395/Remik.V9i2.14712.

F. Dwiramadhan, M. I. Wahyuddin, And D. Hidayatullah, “Sistem Pakar Diagnosa Penyakit Kulit Kucing Menggunakan Metode Naive Bayes Berbasis Web,” Jurnal Teknologi Informasi Dan Komunikasi), Vol. 6, No. 3, P. 2022, 2022, Doi: 10.35870/Jti.

H. B. Rochmanto, G. Anuraga, M. Athoillah, H. Al Azies, And M. Naufal, “Klasifikasi Opini Publik Terhadap Kenaikan Ppn 12% Di Platform X Menggunakan Multinomial Naïve Bayes,” Jurnal Ujmc, Vol. 10, No. 2, Pp. 57–66.

J. Angreyani And Y. Pernando, “Analisis Sentimen Ulasan E-Commerce Shopee Dengan Menggunakan Algoritma Naive Bayes,” Journal Of Computer)Online), Vol. 5, No. 1, Pp. 1–8, 2025, Doi: 10.33330/J-Com.V5i1.3570.

E. Harieby And M. Walid, “Twitter Text Mining Mengenai Isu Vaksinasi Covid-19 Menggunakan Metode Term Frequency, Inverse Document Frequency (Tf-Idf),” 2022. [Online]. Available: Www.Kaggle.Com.

E. Mulyani, F. P. B. Muhamad, And K. A. Cahyanto, “Pengaruh N-Gram Terhadap Klasifikasi Buku Menggunakan Ekstraksi Dan Seleksi Fitur Pada Multinomial Naïve Bayes,” Jurnal Media Informatika Budidarma, Vol. 5, No. 1, P. 264, Jan. 2021, Doi: 10.30865/Mib.V5i1.2672.

I. H. Santi, “Pengawasan Kegiatan Pemilu 2024 Di Tps 11 Kelurahan Bendogerit Dengan Memanfaatkan Aplikasi Siwaslu 1.1.0,” Jurnal Pengabdian Masyarakat - Teknologi Digital Indonesia., Vol. 3, No. 1, P. 31, Mar. 2024, Doi: 10.26798/Jpm.V3i1.1290.

M. Jurusan Ilmu Pemerintahan, U. Sultan Ageng Tirtayasa Jl Raya Palka Km, K. Serang, And P. Banten, “Gowaslu Sebagai Electoral Technology: Keterlibatan Publik Dalam Pengawasan Partisipatif Berbasis Daring Gowaslu As An Electoral Technology: Public Engagement In Online Based Participatory Monitoring,” 2021.

L. Aji Andika And P. Amalia Nur Azizah, “Analisis Sentimen Masyarakat Terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 Pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” 2019.

A. Ridhovan Et Al., “Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum.”

Downloads

Published

2025-06-15

How to Cite

Azzami, D. R., Baenil Huda, Agustia Hananto, & Tukino. (2025). Analysis of User Comment Sentiment on the Siwaslu Application Using the Naive Bayes Method. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 2235–2240. https://doi.org/10.59934/jaiea.v4i3.1132

Issue

Section

Articles