Prediction of Red Chili Prices at Musi Market Using Android-Based Linear Regression Algorithm

Authors

  • Muhammad Syaiful Iskandar Universitas Bina Insani, Indonesia
  • Rita Wahyuni Arifin Universitas Bina Insani, Indonesia

DOI:

https://doi.org/10.59934/jaiea.v4i3.1138

Keywords:

android, Linear Regression, Prediction, Red Chili

Abstract

The prices of nine essential goods (sembako) often experience fluctuations, which can affect people's purchasing power and economic stability. One commodity that frequently undergoes price changes is red bird's eye chili. One of the factors causing the instability of red chili pepper prices is extreme weather changes, such as heavy rainfall or droughts, which directly impact harvest yields and the availability of supplies in the market. This research aims to predict the price of red bird's eye chili in Musi Market using the Linear Regression algorithm. Furthermore, the study also develops an Android-based application to provide users with real-time and predictive price information for red bird's eye chili. This predictive information will be displayed through the Android-based application, making it easily accessible to users and helping them obtain price data quickly and accurately. This system integrates price data, weather, and seasonal events to predict price fluctuations. Evaluation results show that Linear Regression is the best model, with an MAE of 14,380.53 and an R² of 0.686, indicating the model's ability to explain 68.6% of the data variation, providing an efficient solution for price monitoring at Pasar Musi.

Downloads

Download data is not yet available.

References

L. Marianah, “Serangga Vektor Dan Intensitas Penyakit Virus Pada Tanaman Cabai Merah,” AgriHumanis: Journal of Agriculture and Human Resource Development Studies, vol. 1, no. 2, pp. 127–134, 2020, doi: 10.46575/agrihumanis.v1i2.70.

A. Fauzi et al., “Pengaruh Meningkatnya Harga Cabai Terhadap Permintaan Dan Penawaran Di Indonesia,” Jurnal Akuntansi dan Manajemen Bisnis (JAMAN), vol. 3, no. 1, pp. 73–79, 2023.

A. Puspitasari, R. Priyadi, and D. Sufyadi, “Struktur, Perilaku Dan Kinerja Pemasaran Cabai Rawit Merah Di Kecamatan Cigalontang,” AGIBUSSINES SYSTEM SCIENTIFIC JOURNAL, vol. 1, no. 1, pp. 43–55, 2020.

W. Andriani, G. Gunawan, and A. E. Prayoga, “Prediksi Nilai Emas Menggunakan Algoritma Regresi Linear,” Jurnal Ilmiah Informatika Komputer, vol. 28, no. 1, pp. 27–35, 2023, doi: 10.35760/ik.2023.v28i1.8096.

P. Pincheira-Brown, A. Bentancor, N. Hardy, and N. Jarsun, “Forecasting Fuel Prices With The Chilean Exchange Rate: Going Beyond The Commodity Currency Hypothesis,” Energy Econ, vol. 106, pp. 1–16, Feb. 2022, doi: 10.1016/j.eneco.2021.105802.

S. Makridakis, R. J. Hyndman, and F. Petropoulos, “Forecasting In Social Settings: The State Of The Art,” Int J Forecast, vol. 36, no. 1, pp. 15–28, 2020, doi: 10.1016/j.ijforecast.2019.05.011.

M. Pandia, P. Sihombing, P. Simamora, and R. Kaban, “Kajian Literatur Multimedia Retrieval : Machine Learning Untuk Pengenalan Wajah,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 7, no. 1, pp. 161–166, 2024.

S. Supardi et al., “Peran Data Mining dalam Memprediksi Tingkat Penjualan Sepatu Adidas Menggunakan Metode Algoritma Regresi Linear Sederhana,” Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), vol. 4, no. 5, pp. 883–890, 2023, doi: 10.31933/jemsi.v4i5.

M. R. sirfatullah Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman Untuk Machine Learning Dan Deep Learning,” Karimah Tauhid, vol. 2, no. 1, p. 1, 2023.

R. W. Arifin, A. Nurul Alfian, and Inayah Ainina Mawardi, “Implementasi Metode Mobile D pada E-Posyandu berbasis Android sebagai Alat Literasi dalam Mencegah Stunting Anak Usia Dini,” TEMATIK, vol. 11, no. 1, pp. 110–115, Jun. 2024, doi: 10.38204/tematik.v11i1.1886.

P. Anaking, M. N. P. Ma’ady, and ‘Ainatul Fathiyah Abdul Rahim, “Implementation Of Rapid Application Development (RAD) Method In The Design Of Research Partner Recommendation System In Higher Education,” Asia Information System Journal (AISJ), vol. 2, no. 2, pp. 53–59, 2023, [Online]. Available: http://ejournal.radenintan.ac.id/index.php/AISJ/index://creativecommons.org/licenses/by-sa/4.0/

K. Puteri and A. Silvanie, “Machine Learning Untuk Model Prediksi Harga Sembako Dengan Metode Regresi Linear Berganda,” Jurnal Nasional Informatika (JUNIF), vol. 1, no. 2, pp. 82–94, 2020, [Online]. Available: www.data.jakarta.go.id.

N. Sofi and R. Dharmawan, “Perancangan Aplikasi Bengkel CSM Berbasis Android Menggunakan Framework Flutter (Bahasa Dart),” Jurnal Teknik dan Science (JTS), vol. 1, no. 2, pp. 53–64, 2022.

R. W. Arifin, R. Apriani, H. Wicaksono, A. Prameswara, K. Nabila SO, and S. Romlah, “Pengembangan Aplikasi E-UKM Berbasis Android Untuk Mendukung Era Digitalisasi Badan Eksekutif Mahasiswa Universitas Bina Insani,” TEMATIK, vol. 10, no. 1, pp. 131–136, Jun. 2023, doi: 10.38204/tematik.v10i1.1344.

R. Yussandi, “Analisis Dan Perancangan Sistem Informasi Simulasi Pengecatan Kendaraan Berbasis Android,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 2, no. 3, pp. 382–389, 2021.

S. Asyuti and A. A. Setyawan, “Data Mining Dalam Penggunaan Presensi Karyawan Denga Cluster Means,” Jurnal Ilmiah Sains Teknologi Dan Informasi, vol. 1, no. 1, pp. 1–10, 2023.

A. Alfriansyah, I. Mayada, and M. Fauzi, “Perancangan Sistem Booking Jadwal Pernikahan Berbasis Mobile Apps Menggunkan Flutter Microservice,” Scientia Sacra: Jurnal Sains, Teknologi dan Masyarakat, vol. 3, no. 2, pp. 190–200, 2023, [Online]. Available: http://pijarpemikiran.com/index.php/Scientia

Downloads

Published

2025-06-15

How to Cite

Iskandar, M. S., & Rita Wahyuni Arifin. (2025). Prediction of Red Chili Prices at Musi Market Using Android-Based Linear Regression Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 2215–2221. https://doi.org/10.59934/jaiea.v4i3.1138

Issue

Section

Articles