Public Sentiment Analysis on Police Service Satisfaction Using Twitter Dataset Based on NLP and SVM

Authors

  • Giri Van Transco Universitas Adhirajasa Reswara Sanjaya
  • Asti Herliana Universitas Adhirajasa Reswara Sanjaya

DOI:

https://doi.org/10.59934/jaiea.v4i3.1139

Keywords:

Sentiment Analysis, Twitter, NLP, SVM, RBF Kernel

Abstract

The Indonesian National Police plays an important role in maintaining security and providing services to the public. However, there is still public doubt about the quality of its services. This study aims to analyze public sentiment towards police services using Twitter data with a Natural Language Processing (NLP) approach. A total of 14,718 tweets were collected, and after preprocessing, 13,941 tweets were produced that were worthy of analysis. The data was automatically labeled using the Indonesian lexicon method, resulting in 3,737 positive tweets and 6,869 negative tweets. Text representation was carried out using the Term Frequency–Inverse Document Frequency (TF-IDF) method, then classified with the Support Vector Machine (SVM) algorithm using linear, RBF, and polynomial kernels. The Grid Search results showed that the RBF kernel with parameters C=1000 and gamma=0.1 gave the best performance with an accuracy, precision, and recall of 91.36%. Model evaluation on training and test data ratios (70:30, 80:20, and 90:10) showed the highest accuracy of 91.83% at the 90:10 ratio. 10-fold cross-validation produced an average accuracy of 92.31%, precision of 92.29%, and recall of 92.31%. These results indicate that SVM with RBF kernel is effective in classifying text-based sentiment in Indonesian.

Downloads

Download data is not yet available.

References

N. K. S. Adnyani, “Kewenangan diskresi kepolisian Republik Indonesia dalam penegakan hukum pidana,” Jurnal Ilmiah Ilmu Sosial, vol. 7, no. 2, pp. 135–144, 2021.

H. Lahaling, K. Makkulawuzar, R. Rahmawati, R. Nur, D. Darmawati, and N. Insani, “Perspektif Masyarakat Terhadap Perilaku Oknum Polisi Mempengaruhi Kualitas Pelayanan Publik Di Wilayah Kepolisian Daerah Gorontalo,” Al Daulah: Jurnal Hukum Pidana dan Ketatanegaraan, vol. 12, no. 1, pp. 78–89, 2023.

U. R. Handaningtias, P. A. Praceka, and I. A. Indriyany, “Kepercayaan Publik (Public Trust) Terhadap Polisi: Studi Mengenai Wacana Public Dalam# Percumalaporpolisi Dengan Pendekatan Big Data Analysis,” International Journal of Demos, vol. 4, no. 3, pp. 940–953, 2022.

R. M. Nusantara, “Analisis Sentimen Masyarakat terhadap Pelayanan Bank Central Asia: Text Mining Cuitan Satpam BCA pada Twitter,” Co-Value Jurnal Ekonomi Koperasi dan kewirausahaan, vol. 15, no. 9, 2025.

A. R. Padri, A. Asro, and C. Chairuddin, “Klasifikasi Kemancetan Lalu Lintas di Indonesia Menggunakan Metode Naive Bayes Classification,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 2, pp. 297–310, 2023.

R. Darman, “Analisis Sentimen Respons Twitter terhadap Persyaratan Badan Penyelenggara Jaminan Sosial (BPJS) di Kantor Pertanahan,” Widya Bhumi, vol. 3, no. 2, pp. 113–136, 2023.

E. R. Lidinillah, T. Rohana, and A. R. Juwita, “Analisis sentimen twitter terhadap steam menggunakan algoritma logistic regression dan support vector machine,” TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 154–164, 2023.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021.

P. Arsi and R. Waluyo, “Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput, vol. 8, no. 1, p. 147, 2021.

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, 2023.

A. S. Biyantoro and B. Prasetyo, “Penerapan Decision Tree untuk Klasifikasi Status Kesehatan dengan perbandingan KNN dan Naive Bayes: Application of Decision Tree for Health Status Classification, Compared to KNN and Naive Bayes,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), vol. 4, no. 1, pp. 47–55, 2024.

Downloads

Published

2025-06-15

How to Cite

Giri Van Transco, & Asti Herliana. (2025). Public Sentiment Analysis on Police Service Satisfaction Using Twitter Dataset Based on NLP and SVM. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 2222–2229. https://doi.org/10.59934/jaiea.v4i3.1139

Issue

Section

Articles