Cluster Modeling with K-Means on Provincial Data in Indonesia Based on Environmental Indicators
DOI:
https://doi.org/10.59934/jaiea.v4i3.1143Keywords:
Environmental Quality, K-Means, Clustering, Pollution, Population DensityAbstract
Population growth and economic activity in Indonesia significantly affect the quality of the environment. The government uses the Environmental Quality Index as a comprehensive measurement tool, which considers aspects of water, soil, and air pollution, as well as demographic variables such as population size and land area. This study aims to identify groups of 33 provinces in Indonesia based on pollution and demographic characteristics by applying the K-Means algorithm. The data, sourced from the Central Statistics Agency (BPS), underwent a series of stages: pre-processing, standardization, and evaluation using the Elbow, Silhouette Score, and Dunn Index methods. The clustering results identified two main groups. The first cluster consists of three provinces on the island of Java, which exhibit high population density and pollution levels. Meanwhile, the second cluster includes the remaining 30 provinces with more diverse characteristics. These findings are expected to support the formulation of more specific and evidence-based environmental policies.
Downloads
References
B. K. Dewi and L. Fitria, “ANALISIS INDEKS KUALITAS LINGKUNGAN HIDUP (IKLH) DI DKI JAKARTA TAHUN 2019-2021,” Ilmiah Indonesia, vol. 33, no. 1, pp. 1–12, 2022.
Z. A. Hidayati and Zakianis, “Analisis Faktor-Faktor Yang Mempengaruhi Indeks Kualitas Lingkungan Hidup (IKLH) Di Indonesia Tahun 2017-2019,” Jurnal Medika Utama, vol. 3, no. 2, p. 2329, 2022, [Online]. Available: http://jurnalmedikahutama.com/index.php/JMH/article/view/456
Y. B. Kondolele and B. Mustari, “Faktor Penentu Kualitas Lingkungan Hidup pada Pusat Populasi Indonesia Yusliaty Bubun Kondolele 1 , Bakhtiar Mustari 2 1,” Ekonomika dan Dinamika Sosial, vol. 4, pp. 71–93, 2025.
I. Ferdiansyah, B. Huda, and A. Hananto, “Analisis Clustering Menggunakan Metode K-Means Pada Kemiskinan Di Jawa Timur Tahun 2020,” vol. 4, pp. 858–869, 2024.
D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 293–301, 2023, doi: 10.57152/malcom.v3i2.952.
M. Guntara and N. Lutfi, “Optimasi Cacah Klaster pada Klasterisasi dengan Algoritma KMeans Menggunakan Silhouette Coeficient dan Elbow Method,” JuTI “Jurnal Teknologi Informasi,” vol. 2, no. 1, p. 43, 2023, doi: 10.26798/juti.v2i1.944.
S. Paembonan and H. Abduh, “Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat,” PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 6, no. 2, p. 48, 2021, doi: 10.51557/pt_jiit.v6i2.659.
R. A. Sary, N. Satyahadewi, and W. Andani, “Application of K-Means++ With Dunn Index Validation of Grouping West Kalimantan Region Based on Crime Vulnerability,” Barekeng, vol. 18, no. 4, pp. 2283–2292, 2024, doi: 10.30598/barekengvol18iss4pp2283-2292.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.