Application of K-Means Clustering Algorithm for E-Commerce Data Analysis

Authors

  • Laila Ali Putri Universitas Islam Negri Sumatera Utara
  • Mazayah Tsaqofah Universitas Islam Negri Sumatera Utara
  • Dea Syahfira Hasibuan Universitas Islam Negeri Sumatera Utara
  • Hasti Fadillah Universitas Islam Negri Sumatera Utara
  • Maria Ulfa Universitas Islam Negri Sumatera Utara
  • Mhd.Furqan Universitas Islam Negri Sumatera Utara

DOI:

https://doi.org/10.59934/jaiea.v4i3.1170

Keywords:

K-Means, E-Commerce, Clustering

Abstract

The development of information technology has driven significant changes in consumer behavior, especially in online shopping transactions through e-commerce platforms. Increasingly fierce business competition requires companies to not only focus on the product, but also understand the characteristics and needs of customers in order to maintain their loyalty. This research aims to identify customer behavior patterns so that segmentation can be carried out that is useful for a more personalized, effective, and efficient marketing strategy. The results of the analysis show that there is a segmentation of customers into several groups based on different transaction intensity and value. This segmentation can be used as a basis for strategic decision-making, especially in marketing planning and customer relationship management. By understanding customer behavior patterns through the clustering process, companies can develop a more personalized and effective service strategy to increase loyalty and business profitability.

Downloads

Download data is not yet available.

References

I. S. B. E. Adiana, “No Title,” Anal. Segmentasi Pelangg. Menggunakan Komb. RFM Model dan Tek. Clust. JUTEI (Jurnal Terap. Teknol. Informasi), vol. 2, pp. 23–32, 2018, doi: 10.21460.

J. W. et Al, “No Title,” “An Empir. Study Cust. Segmentation by Purch. Behav. Using a RFM Model K -Means Algorithm, vol. 2020, 2020, doi: 10.1155/2020/8884227.

A. Fauzi, “No Title,” Data Min. dengan Tek. Clust. Menggunakan Algoritm. K-Means pada Data Transaksi Superst., 2019.

Charlie, “No Title,” MMEMBANGUN KEPERCAYAAN DAN KETERLIBATAN Konsum. MELALUI LIVE STREAING Soc. MEDIA E-COMMERCE, 202AD.

D. E. . Amin, “No Title,” pengaruh live streaming dan onlline Cust. Rev. terhadap pembelian Prod. Fash. muslim (Studi kasus Pelangg. tiktok shop di surabaya), vol. 07, 2023.

Deng, “No Title,” Specif. Strateg. Innov. Mark. Model. E-commerce Enterp. Internet Era. Acad. J. Bus. Manag., pp. 22–26, 2023.

R. K. Gupta, G. K., Agrawal, D., Singh, R. K., & Arya, “No Title,” Prevalence, Risk Factors Socio Demogr. Co-Relates Adolesc. Hypertens. Dist. Ghaziabad, pp. 293–298, 2020, [Online]. Available: https://www.iapsmupuk.org/journal/index.php/IJCH/article/view/331

M. I. Istiana, “No Title,” Segmentasi Pelangg. Menggunakan Algoritm. K-Means Sebagai Dasar Strateg. Pemasar. pada LAROIBA Seluler, 2019, [Online]. Available: http://eprints.dinus.ac.id/12733/2/abstrak_12903.pdf

K. Brahmana, R. W. S., Mohammed, F. A., & Chairuang, “No Title,” Cust. Segmentation Based RFM Model Using K-Means, K-Medoids, DBSCAN Methods, vol. 11, p. 32, 2020, [Online]. Available: https://ojs.unud.ac.id/index.php/lontar/article/view/58025

D. Chandra, M. D., Irawan, E., Saragih, I. S., Windarto, A. P., & Suhendro, “No Title,” Penerapan Algoritm. K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi. BIOS J. Teknol. Inf. Dan Rekayasa Komput., vol. 13, pp. 30–38, 2021, [Online]. Available: https://francis-press.com/papers/11066

G. Zhang, Z., Ni, “No Title,” Comp. Trajectory Clust. Methods based K means DBSCAN. Proc. 2020 IEEE Int. Conf. Inf. Technol. Big Data Artif. Intell., pp. 557–561, 2020.

Downloads

Published

2025-06-15

How to Cite

Laila Ali Putri, Mazayah Tsaqofah, Dea Syahfira Hasibuan, Hasti Fadillah, Maria Ulfa, & Mhd.Furqan. (2025). Application of K-Means Clustering Algorithm for E-Commerce Data Analysis. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 2364–2367. https://doi.org/10.59934/jaiea.v4i3.1170

Issue

Section

Articles