Analysis of Technology Acceptance Using the UTAUT Model: A Case Study of the Use of Blu By BCA Digital
DOI:
https://doi.org/10.59934/jaiea.v4i3.1182Keywords:
UTAUT, blu By BCA Digital, behavioral intention, digital banking, user acceptanceAbstract
This study investigates user acceptance of the Blu by BCA Digital application using the UTAUT framework, extended with the Perceived Risk construct. The objective is to analyze key factors influencing behavioral intention to adopt digital banking services. A descriptive quantitative approach was employed through an online questionnaire distributed to Blu users. The instrument was developed from established indicators and refined through validity and reliability testing. Data were analyzed using Jamovi and WarpPLS, covering both measurement and structural model assessments. The results show that Performance Expectancy, Social Influence, Facilitating Conditions, and Perceived Risk significantly affect behavioral intention, while Effort Expectancy does not. These findings reflect users’ emphasis on benefits, support systems, and security over ease of use, indicating increasing digital familiarity. This research contributes to understanding technology acceptance in the digital finance sector and provides insights for developers and institutions in enhancing user adoption.
Downloads
References
Alim, M. N., Hidayat, W., & Amalia, R. (2024). PENGARUH PENERIMAAN TEKNOLOGI DENGAN METODE UTAUT TERHADAP MINAT MENGGUNAKAN MOBILE BANKING DI BSI TANGERANG. I-BEST Islamic Banking & Economic Law Studies, 3(1), 12–32. https://doi.org/10.36769/ibest.v3i1.489
Bayhaqi, F., & Nuryana, I. K. D. (2022). Analisis Kepuasan Pengguna Layanan Aplikasi Bima+ dengan Metode UTAUT. Journal of Emerging Information System and Business Intelligence (JEISBI), 3(3), 84–93. Retrieved from https://ejournal.unesa.ac.id/index.php/JEISBI/article/view/47087
Ariyanto, A. S. S., Yuttama, F. R., & Slamet, S. (2023). EVALUASI PENGGUNAAN QRIS MENGGUNAKAN MODEL UTAUT PADA ERA PERKEMBANGAN FINTECH. Majalah Ilmiah METHODA, 13(3), 253–160. https://doi.org/10.46880/methoda.vol13no3.pp253-260
Pangestu, M. G. (2022). Behavior Intention Penggunaan Digital Payment QRIS Berdasarkan Model Unified Theory of Acceptance and Use of Technology (UTAUT) (Studi pada UMKM Sektor Industri Makanan & Minuman di Kota Jambi). Jurnal Ilmiah Manajemen Dan Kewirausahaan (JUMANAGE), 1(1). https://doi.org/10.33998/jumanage.2022.1.1.23
Auliya, P. N., & Arransyah, M. F. (2023). Penerapan Model UTAUT untuk Mengetahui Minat Perilaku Konsumen dalam Penggunaan QRIS. Ekonomi Keuangan Investasi Dan Syariah (EKUITAS), 4(3), 885–892. https://doi.org/10.47065/ekuitas.v4i3.2808
Paramita, E. D., & Cahyadi, E. R. (2024). The Determinants of behavioral intention and use behavior of QRIS as digital Payment Method using Extended UTAUT model. Indonesian Journal of Business and Entrepreneurship. https://doi.org/10.17358/ijbe.10.1.132
Aprianto, I. G. L. A. (2022). Tinjauan literatur: Penerimaan Teknologi Model UTAUT. KONSTELASI Konvergensi Teknologi Dan Sistem Informasi, 2(1). https://doi.org/10.24002/konstelasi.v2i1.5377
Suprapti, I. A. P., Chaidir, T., Arini, G. A., Wahyunadi & Swastika, R. (2024). Determinants of the Use of QRIS Application-Based Non-Cash Transactions for Consumers in Mataram City: An Application of the UTAUT 2 Model. International Journal of Multidisciplinary Research and Analysis, 07(08), 3844–3853. https://doi.org/10.47191/ijmra/v7-i08-26
Novaria, R. (2024). Tracing the Success of QRIS Policy Implementation in Surabaya City's Parking Levy System. Society, 12(2), 155–166. https://doi.org/10.33019/society.v12i2.680
Nuswantoro, S. A., Ulfi, M., Miftahurrizqi & Rafli, M. (2024). Identification of Factors Influencing the Use of QRIS Using TAM and UTAUT 2 Methods. Scientific Journal of Informatics, 11(2), 451–466. https://doi.org/10.15294/sji.v11i2.3562
Pratita, A., Suryanto, T. L. M., Pratama, A. & Wibowo, A. (2025). ChatGPT in Education: Investigating Students Online Learning Behaviors. International Journal of Information and Education Technology, 15(3), 510–524. https://doi.org/10.18178/ijiet.2025.15.3.2262
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.