Socio-Economic Status Classification of Neighborhood Residents Using the Decision Tree Algorithm
DOI:
https://doi.org/10.59934/jaiea.v4i3.1216Keywords:
Decision Tree, Number of Family Members, Occupation, Socio-Economic ClassificationAbstract
This study aims to analyze the socioeconomic classification of RT residents using the Decision Tree algorithm. The analysis was carried out using data that includes attributes such as the number of family members, education, and occupation. The results of the study show that the Decision Tree algorithm is capable of producing a clear and structured classification model, with the number of family members being the dominant factor in class distribution. Most residents were classified into the Middle socioeconomic category (68.3%), followed by the Low category (26.8%), and the High category (4.9%). These results reflect that the majority of residents have relatively stable socioeconomic conditions, although there are still groups that require special attention. This classification model provides important insights for policymakers to design more focused assistance and economic empowerment programs. This study also recommends further development by adding more diverse attributes and comparing the Decision Tree algorithm with other classification methods to improve the model’s accuracy and validity.
Downloads
References
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.
R. Pratiwi, M. N. Hayati, and S. Prangga, “Perbandingan Klasifikasi Algoritma C5.0 Dengan Classification and Regression Tree (Studi Kasus : Data Sosial Kepala Keluarga Masyarakat Desa Teluk Baru Kecamatan Muara Ancalong Tahun 2019),” BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 2, pp. 273–284, 2020, doi: 10.30598/barekengvol14iss2pp273-284.
I. G. J. E. P. Ni Wayan Oktha Pratiwi, Nengah Widya Utami, “KLASIFIKASI PENENTUAN PENERIMA BANTUAN SOSIAL TUNAI (BST) MENGGUNAKAN ALGORITMA C4.5 DI DESA KERAMAS, GIANYAR BALI,” JINTEKS (Jurnal Inform. Teknol. dan Sains), vol. 4, no. 3, pp. 101–107, 2022.
A. Aldiyansyah, A. Irma Purnamasari, and I. Ali, “Perbandingan Tingkat Akurasi Algoritma Decision Tree Dan Random Forest Dalam Mengklasifikasi Penerima Bantuan Sosial Bpnt Di Desa Slangit,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 127–132, 2024, doi: 10.36040/jati.v8i1.8290.
N. Rosanti, “Jurnal Teknologi Terpadu PENERAPAN MODEL MACHINE LEARNING UNTUK MENENTUKAN,” vol. 8, no. 2, pp. 127–135, 2022.
J. Brmanda, “Klasifikasi Masyarakat Penerima Bantuan Sosial dari Pemerintah dengan Metode Algoritma C4.5,” J. Komput. Antart., vol. 3, no. c, pp. 34–41, 2025.
H. Sharma and S. Kumar, “A Survey on Decision Tree Algorithms of Classification in Data Mining,” Int. J. Sci. Res., vol. 5, no. 4, pp. 2094–2097, 2016, doi: 10.21275/v5i4.nov162954.
B. Gupta, A. Rawat, A. Jain, A. Arora, and N. Dhami, “Analysis of Various Decision Tree Algorithms for Classification in Data Mining,” Int. J. Comput. Appl., vol. 163, no. 8, pp. 15–19, 2017, doi: 10.5120/ijca2017913660.
T. C. Kershaw, S. Bhowmick, C. C. Seepersad, and K. Hölttä-Otto, “A decision tree based methodology for evaluating creativity in engineering design,” Front. Psychol., vol. 10, no. JAN, pp. 1–19, 2019, doi: 10.3389/fpsyg.2019.00032.
D. Rose and E. Harrison, “The European socio-economic classification: A new social class schema for comparative European research,” Eur. Soc., vol. 9, no. 3, pp. 459–490, 2007, doi: 10.1080/14616690701336518.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.