A Review: Design and Build Damage Detection Equipment on Sensors and Power Supply Automatic Rain Gauge (ARG) With Long Short Term Memory Integrated

Authors

  • marzuki sinambela STMKG

DOI:

https://doi.org/10.59934/jaiea.v2i2.162

Keywords:

ARG, LSTM, Sensor and Power Supply

Abstract

The Meteorology, Climatology, and Geophysics Agency (BMKG) technicians have successfully developed automatic rain measuring devices. This tool is called Automatic Rain Gauge - BMKG (ARG-BMKG). The existence of this instrument can replace conventional rain measuring observation systems or public rain stations in Indonesia. ARG – BMKG consists of a tipping bucket sensor, solar panels, GPRS modem, dry battery, and data logger. This repeated operation causes sensor measurement errors due to damage to the sensor due to the sensor voltage supply not meeting specifications, resulting in inaccurate data sent. Predicting sensor damage can be done with predictive maintenance.  The results of field tests in previous studies showed that the system could operate properly where the device could measure the voltage of each sensor and send data to the database A sensor damage prediction model was designed and implemented using long-sort term memory (LSTM) by generating root mean square error (rmse).  The system can provide damage prediction information on the sensor, and the power supply is displayed through the website properly

Downloads

Download data is not yet available.

References

I. Sofwan Lukito and J. Rimba, “AUTOMATIC RAIN GAUGE (ARG).”

P. Rancang et al., “Supply Automatic Weather Station Berbasis Internet of Things (Studi Kasus : Stasiun Klimatologi Malang) Development of Failure Detection Design for Temperature and Relative Humidity, Air Pressure, Solar Radiation Sensor, and Power Supply of Automatic Weather Station Based on Internet of Things (Case Study: Malang Climatology Station).”

“SKRIPSI RANCANG BANGUN AWS MONITORING DEVICE UNTUK MENGECEK KUALITAS KELUARAN SENSOR BERBASIS INTERNET OF THINGS (IOT) DESIGN OF AWS MONITORING DEVICE TO CHECK THE QUALITY OF THE SENSOR OUTPUT BASED ON INTERNET OF THINGS (IOT).”

“SKRIPSI SISTEM PREDICTIVE MAINTENANCE PADA ANEMOMETER DAN TIPPING BUCKET SECARA REAL TIME PREDICTIVE MAINTENANCE SYSTEM FOR ANEMOMETER AND TIPPING BUCKET IN REAL TIME.”

P. S. Brown Macheso and A. G Meela, “IoT Based Patient Health Monitoring using ESP8266 and Arduino,” International Journal of Computer Communication and Informatics, vol. 3, no. 2, pp. 75–83, 2021, doi: 10.34256/ijcci2127.

Y. Ding, H. Wu, and K. Zhou, “Design of Fault Prediction System for Electromechanical Sensor Equipment Based on Deep Learning,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/3057167.

K. M. Van’T Veen, T. P. A. Ferré, B. V. Iversen, and C. D. Børgesen, “Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface,” Hydrol Earth Syst Sci, vol. 26, no. 1, pp. 55–70, Jan. 2022, doi: 10.5194/hess-26-55-2022.

A. Khumaidi, R. Raafi, I. Permana Solihin, and J. Rs Fatmawati, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” Jurnal Telematika, vol. 15, no. 1.

E. Supriyadi, “PREDIKSI PARAMETER CUACA MENGGUNAKAN DEEP LEARNING LONG-SHORT TERM MEMORY (LSTM) WEATHER PARAMETERS PREDICTION USING DEEP LEARNING LONG-SHORT TERM MEMORY (LSTM).” [Online]. Available: http://bmkgsoft.database.bmkg.go.id.

M. Wildan Putra Aldi and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin.”

Abimanyu, L. Katriani, and D. Darmawan, “Design of Automatic Rain Gauge Prototype (ARG) As An Early Warning Indicator for Cold Lava Flood Based on the Internet of Things (IoT),” in Journal of Physics: Conference Series, Apr. 2021, vol. 1805, no. 1. doi: 10.1088/1742-6596/1805/1/012013.

S. Poornima and M. Pushpalatha, “Prediction of rainfall using intensified LSTM based recurrent Neural Network with Weighted Linear Units,” Atmosphere (Basel), vol. 10, no. 11, Nov. 2019, doi: 10.3390/atmos10110668.

I. Sofwan Lukito and J. Rimba, “AUTOMATIC RAIN GAUGE (ARG).”

A. A. Ningrum et al., “ALGORITMA DEEP LEARNING-LSTM UNTUK MEMPREDIKSI UMUR TRANSFORMATOR,” vol. 8, no. 3, pp. 539–548, 2021, doi: 10.25126/jtiik.202184587.

W. Setyonegoro and R. Ramadhani, “SISTEM KEAMANAN PADA PENGIRIMAN DATA INFORMASI DINI TSUNAMI BERBASIS ANDROID PADA PIHAK BERWENANG SECARA NASIONAL-SECURITY SYSTEM IN SENDING TSUNAMI DATA EARLY INFORMASIRMATION B,” 2016. [Online]. Available: https://www.researchgate.net/publication/305778439

P. Instrumentasi et al., “RANCANG BANGUN PROTOTYPE JARINGAN AUTOMATIC RAIN GAUGE (ARG) BERBASIS WEBSITE ACHMAD MAULANA RAFI*, BIMA TRI ARIYANTO, HAIRATUNISA, AGUS TRI SUTANTO,” 2018.

D. Cañiza, F. Mitjans, and O, “Remote Monitoring System of Automatic Rain Gauges using Machine-to-Machine application Evaluation of the effects of Climate Change on Air Transmission Lines, using PLS-CADD Software tools and Hierarchical Analytical Processes (AHP). View project Potential of Unconventional Hydrocarbons in the Paraguayan Chaco: Carandayty Sub-Basin Case View project Remote Monitoring System of Automatic Rain Gauges using Machine-to-Machine application,” vol. 13, no. 1, pp. 4–13, doi: 10.9790/2834-1301010413.

A. Khumaidi, R. Raafi, I. Permana Solihin, and J. Rs Fatmawati, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” Jurnal Telematika, vol. 15, no. 1.

A. C. Achmad, “EVALUATION ON THE IMPLEMENTATION OF EARLY WARNING SYSTEM FOR DEBRIS FLOW IN MERAPI AREA (CASE STUDY AT BOYONG RIVER),” 2015.

F. A. Adryan and K. W. Sastra, “Predictive Maintenance for Aircraft Engine Using Machine Learning: Trends and Challenges,” AVIA, vol. 3, no. 1, Jul. 2021, doi: 10.47355/avia.v3i1.45.

Downloads

Published

2023-02-15

How to Cite

sinambela, marzuki. (2023). A Review: Design and Build Damage Detection Equipment on Sensors and Power Supply Automatic Rain Gauge (ARG) With Long Short Term Memory Integrated . Journal of Artificial Intelligence and Engineering Applications (JAIEA), 2(2), 59–63. https://doi.org/10.59934/jaiea.v2i2.162