Detection of Rotten Fruits at Pomona Fruit House Using the Convolutional Neural Network Method

Authors

  • Ferly Kosasih STMIK Time
  • Hendri STMIK Time
  • Jackri Hendrik STMIK Time

DOI:

https://doi.org/10.59934/jaiea.v5i1.1705

Keywords:

spoiled fruit, digital image processing, Convolutional Neural Network (CNN), fruit classification, automatic detection, fruit quality

Abstract

The growing public awareness of healthy lifestyles has led to an increasing demand for fresh and high-quality fruits. However, during storage and distribution, fruits are prone to spoilage due to environmental and biological factors. The manual identification process of spoiled fruits remains limited in terms of accuracy and efficiency. To address this issue, this study proposes the application of digital image processing technology based on Convolutional Neural Network (CNN) to automatically detect the condition of fruits. This system is designed to assist in quality monitoring at locations such as Rumah Buah Pomona by classifying fresh and spoiled fruits based on their visual features. This solution is expected to improve the effectiveness of fruit distribution and reduce potential losses caused by unfit products.

Downloads

Download data is not yet available.

References

M. Deni and I. Mawarni, “Analisis Marketing Strategy Sayur Online Di Masa New Normal Covid-19,” J. Ekon. dan Bisnis, vol. 5, no. 1, pp. 174–181, 2022.

J. Saputri Mendrofa, M. W. Zendrato, N. Halawa, E. E. Zalukhu, and N. K. Lase, “Peran Teknologi dalam Meningkatkan Efisiensi Pertanian,” vol. 1, pp. 01–12, 2024.

R. M. Fauzan, “Pengaruh Waktu Dan Suhu Penyimpanan Terhadap Kadar Asam Askorbat Buah Pepaya (Carica Papaya L),” 2024.

Nadya Winda Iswara, Muhammad Agus Niam, Bagus Tegar Ardi Pramana, Ahmad Nabil Al Aflah, Ali Umar Dhani, and Yasmin Aulia Rachma, “Pengaruh Kondisi Penyimpanan terhadap Susut Bobot, Tekstur, dan Warna Pisang Kepok Kuning ( Musa acuminata balbisiana Colla),” J. Agrifoodtech, vol. 2, no. 1, pp. 1–6, 2023.

F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Informatics Comput. Sci., vol. 1, no. 02, pp. 104–108, 2020.

D. C. Agustin, M. A. Rosid, and N. Ariyanti, “Implementasi Convolutional Neural Network Untuk Deteksi Kesegaran Pada Apel,” J. Fasilkom, vol. 13, no. 02, pp. 145–150, 2023.

I. Arthalia, “Penggunaan Website Sebagai Sarana Evaluasi Kegiatan Akademik Siswa Di Sma Negeri 1 Punggur Lampung Tengah.,” JIKI (Jurnal llmu Komput. lnformatika), no. 2, pp. 93–109, 2021.

E. Nurlailah and K. R. Nova Wardani, “Perancangan Website Sebagai Media Informasi Dan Promosi Oleh-Oleh Khas Kota Pagaralam,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 4, pp. 1175–1185, 2023.

M. Alviano, Y. Trimarsiah, and Suryanto, “Perancangan Aplikasi Penjualan Berbasis Web Pada Perusahaan Dagang Dendis Production Menggunakan Php Dan Mysql,” Jik, vol. 14, no. 1, pp. 37–45, 2023.

U. Wahyuningsih, “Penanggulangan Korosi Pada Pipa Gas Dengan Metode Catodic Protection (Anoda Korban) Pt Pgn Solution Area Tangerang,” 2020.

S. Safaruddin, M. Mahmuddin, and A. Tando, “Karakteristik tekanan aliran yang melewati belokan pipa vertikal pada arah radial dan tangensial,” Sultra J. Mech. Eng., vol. 1, no. 1, pp. 25–32, 2022.

A. K. Zahra, H. Supomo, and I. Baihaqi, “Analisis Teknis dan Ekonomis Penerapan Pipe Piece Family Manufacturing (PPFM) pada Instalasi Sistem Perpipaan Kapal Tanker 17.500 DWT,” J. Tek. ITS, vol. 8, no. 2, 2020.

A. Mochamad, “Optimalisasi Perawatan Sistem Pemipaan Kapal Selama Pengedockan Di Pt. Indonesia Marina Shipyard Gresik,” J. Sains dan Seni ITS, pp. 5–14, 2019.

W. Wisnaningsih, K. M. A. Fatah, and A. K. Saputra, “Pengaruh Variasi Debit Aliran Gas Argon Terhadap Laju Korosi Pada Material Stainlees Steel Austenitic 304 Dengan Larutan C6H8O7 (Asam Sitrat),” JUSTIMES (Jurnal Rekayasa Tek. Mesin Saburai), vol. 1, no. 01, pp. 12–18, 2023.

K. Azmi, S. Defit, and S. Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” J. Unitek, vol. 16, no. 1, pp. 28–40, 2023.

A. ANHAR and R. A. PUTRA, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 2, p. 466, 2023.

Sukusvieri Andrianto, “Implementasi Metode Single Shot Detector (Ssd),” 2020.

Downloads

Published

2025-10-15

How to Cite

Kosasih, F., Hendri, & Hendrik, J. (2025). Detection of Rotten Fruits at Pomona Fruit House Using the Convolutional Neural Network Method. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 5(1), 2084–2089. https://doi.org/10.59934/jaiea.v5i1.1705