Identification of Longan Species Based on Leaf Shape Texture and Color Using KNN Classification

Authors

  • Setia Adiyasa Lubis STMIK Kaputama
  • Yani Maulita STMIK KAPUTAMA
  • Mili Alfhi Syari STMIK KAPUTAMA

DOI:

https://doi.org/10.59934/jaiea.v3i1.238

Keywords:

Identification, KNN Classification, Longan, Type

Abstract

This study aims to identify the type of longan based on the shape, texture and color of the leaves using KNN classification. With a method that can identify the type of longan automatically, farmers and researchers can obtain information more quickly and accurately about the type of longan that is being cultivated or studied. This can help in choosing the right variety, more efficient maintenance, and improve the quality and productivity of longan plants. This research is an experimental research consisting of eight steps, namely preparation, theoretical studies, data collection, data analysis and processing, testing and implementation and the last is the final stage. Based on research conducted at UD Mitra Tani on Jalan Madura No. 81 Kebun Lada, Kec. Binjai Utara, Binjai City, North Sumatra, the results of data analysis from longan leaves show that the most common type of longan found in the nursery is Red longan. This study was conducted to identify the dominant longan species in the population and gain a deeper understanding of the diversity of longan varieties in the region.

Downloads

Download data is not yet available.

References

Mariana, B. D., Sugiyatno, A., & Supriyanto, A. (2016). Genetic Diversity of Local Accessions of Dimocarpus longan Revealed By ISSR Markers. Buletin Plasma Nutfah, 17(1), 25.

Kaya, J. U. (2022). Klasiifiikasii Motiif Kaiin Teinun meinggunakan K-Neiareist Neiiighbor Beirdasarkan Gray Leiveil Co-occurreincei Matriix. Jurnal J-COM (Jurnal Iinformatiika dan Teiknologii Komputeir), Vol. 03 No. 02 73 – 76.

Fauziiah, W. N. (2015). "Ujii aktiiviitas Antiimiikroba Eikstrak eitanol Daun, Kuliit Dan Biijii Keileingkeing Teirhadap Peirtumbuhan Saccharomyceis Ceireiviisiiaei Dan Lactobaciillus Plantarum Peinyeibab Keirusakamm Miira Siiwalan". Skriipsii, Malang Program Pasca Sarjana Saiins.

Fiirdaus R, A. (2022). Klasiifiikasii Jeiniis Tanaman Keileingkeing Beirdasarkan Ciirii Teikstur Daun Meinggunakan Meitodei Adaptiivei Neiuro Fuzzy Iinfeireincei Systeim (AFIiS). Jurnal Eixplorei IiT 14.

Mardhyath, A., Latiipa , H. S., & Juliita, R. (2020). Algoriitma K-Neiareist Neiiighbour dalam Meingklasiifiikasii Peiniilaiian Peiseirta Diidiik. JSAIi : Journal Sciieintiifiic and Appliieid Iinformatiics, Vol. 3, No. 3, hal. 149-155.

Hanafi, M. H., Fadillah, N., & Insan, A. (2019). Optimasi Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Alpukat Berdasarkan Warna. It Journal Research and Development, 4(1), 10–18. https://doi.org/10.25299/itjrd.2019.vol4(1).2477 Hanafi, M. H., Fadillah, N., & Insan, A. (2019). Optimasi Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Alpukat Berdasarkan Warna. It Journal Research and Development, 4(1), 10–18

Nafi’iyah, N., & Prasetyo, R. (2022). Klasifikasi Jenis Kelengkeng Berdasarkan Daun Menggunakan Convolution Neural Network Multilayer Perceptron. Jurnal Telematika, Vol. 17 No. 2.

Salsabila, A., Yunita, R., & Rozikin, C. (2021). Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM. Technomedia Journal, 6(1 Agustus), 124–137.

Downloads

Published

2023-10-15

How to Cite

Lubis, S. A., Maulita, Y., & Syari, M. A. (2023). Identification of Longan Species Based on Leaf Shape Texture and Color Using KNN Classification. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(1), 15–21. https://doi.org/10.59934/jaiea.v3i1.238