Occupational Correlation to the Level of Community Welfare Using The Apriori Algorithm (Case Study: Mangga Village)

Authors

  • Aulia Adlin Revaldi STMIK Kaputama
  • Novriyenni STMIK KAPUTAMA
  • Lina Arliana Nur Kadim STMIK KAPUTAMA

DOI:

https://doi.org/10.59934/jaiea.v3i1.257

Keywords:

Apriori Algorithm, Community Welfare, Mangga Village

Abstract

Mango village is one of the areas that participates in various welfare programs for the local community, where in this village there are still people who are far from prosperous because of various factors that affect the welfare of the local community, one of which is the jobs owned by the community. Therefore, it is important for people to understand that work also greatly influences the level of welfare for their own lives, so that they are fulfilled in the economy, education and others. Therefore the author wants to create a system that can assist the government in developing community welfare programs in Mango Village by knowing the relationship between work and the level of social welfare. After carrying out the above case trials with minimum support = 25%, confidence = 100% so that the rule results that meet the support and confidence values are obtained, it can be concluded that if the assets owned are A4 (motorcycles), with T2 dependents (3-4), with M2 jobs (Private Employees) and A4 assets (Motorcycles), with P2 income (> 1,000,000 - < 2,000,000), then enter K2 (welfare stage II) with a support value of 20%, 100% confidence.

Downloads

Download data is not yet available.

References

Annisa Ilham Fathimah, Sudin Saepudin, & Edwinanto. (2022). Penerapan Data Mining Dengan Metode Apriori Pada Penjualan Sembako (Studi Kasus: Grosir Sembako Lina). Jurnal Rekayasa Teknologi Nusa Putra, 8(2), 123–131. https://doi.org/10.52005/rekayasa.v8i2.271

Aziz Muslim, M., Prasetiyo, B., Laily Harum Mawarni, E., Juli Herowati, A., Mirqotussa’adah, Hardiyanti Rukmana, S., & Nurzahputra, A. (2019). Data Mining Algoritma C4.5. In Nucl. Phys. (Vol. 13, Issue 1).

Badan Pusat Statistik. (2010). Modul 8 Ketenagakerjaan. Jakarta: Badan Pusat Statistik.

Budiman, E. (2016). algoritma & Pemrograman. CV Andi Offset, Yogyakarta.

Cara, I., Buaton, R., & Sihombing, M. (2022). Korelasi Nilai Literasi Rapot K.13 Dalam Nilai Pengetahuan Dan Keterampilan Pada Siswa Menggunakan Metode Apriory. Jurnal Ilmiah Kaputama (JIKA), 6(2).

Romdon, D., & Kholil, I. (2022). Implementasi Data Mining dengan Metode Apriori Dalam Menentukan Pola Pemilihan Pemeriksaan Kimia. TIN: Terapan Informatika Nusantara, 2(10), 642–651. https://doi.org/10.47065/tin.v2i10.1349

Sabilla, M. Y., Lumbanbatu, K., & Prahmana, I. G. (2022). Implementasi Algoritma Apriori Dalam Perencanaan Persediaan Alat Kesehatan Pada Apotek. Jurnal Teknik Informatika Kaputama (JTIK), 6(2), 434–447.

Sari, A. O., & Abdilah, A. (2015). Web Programming. Andi Offset, Yogyakarta.

Solichin. (2010). MySQL, Andi Offset, Yogyakarta.

Buulolo S.Kom, M.Kom, E. (2020). Data Mining (E. Buulolo S.Kom, M.Kom (ed.); 1st ed.). Grup Penerbit CV Budi Utama.

Downloads

Published

2023-10-15

How to Cite

Adlin Revaldi, A., Novriyenni, & Kadim, L. A. N. (2023). Occupational Correlation to the Level of Community Welfare Using The Apriori Algorithm (Case Study: Mangga Village). Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(1), 44–52. https://doi.org/10.59934/jaiea.v3i1.257