Correlation Between Technological Advances On Employee Performance Using A PRIORI Method (Case Study: PLN City of Binjai)
DOI:
https://doi.org/10.59934/jaiea.v3i1.304Keywords:
apriori, correlation, data mining, employee performance, technological advancesAbstract
Technology is a set of tools that can be used or utilized by humans to facilitate various forms of work. Employee performance is the ability to achieve job requirements, where a work target can be completed in a timely manner or does not exceed the time limit provided so that the goal will be in accordance with company morals and ethics. This study aims to determine the correlation of technological progress on employee performance. In this study using RapidMiner as a test of 230 data on employees of PLN Binjai City. By using the Apriori algorithm method with a minimum support value of 10% and confidence of 50%, 44 association rules are obtained in the entire set and there are 2 rules in 4 itemsets. From the test results, the best rule with the highest value is obtained, namely if the data is T7, A3, F7 then SB, which means if using Ms.Word and Ms.Excel and Ms.PPT, using FSO Mobile and PLN Mobile, using Computers and Printers and Fax Machines then employee performance is Very Good with a support value of 30% and a confidence value of 96%.
Downloads
References
D. Sapartiningsih, Suharno, and D. Kristianto, “Analisis Pengaruh Kompetensi Sumber Daya Manusia, Pemanfaatan Teknologi Informasi, Partisipasi Penganggaran dan Pengawasan Terhadap Akuntabilitas Pengelolaan Dana Desa,” J. Akunt. dan Sist. Teknol. Inf., vol. 14, no. 1 Maret, pp. 100–114, 2018.
N. Nurjaya, A. Affandi, D. Ilham, J. Jasmani, and D. Sunarsi, “Pengaruh Kompetensi Sumber Daya Manusia Dan Kemampuan Pemanfaatan Teknologi Terhadap Kinerja Aparatur Desa Pada Kantor Kepala Desa Di Kabupaten Gunungkidul, Yogyakarta,” JENIUS (Jurnal Ilm. Manaj. Sumber Daya Manusia), vol. 4, no. 3, p. 332, 2021, doi: 10.32493/jjsdm.v4i3.10460.
Rhoma Iskandar and Nur Dwi Jayanto, “Analisis Pengaruh Kemampuan Dalam Mengoperasikan Dan Memanfaatkan Teknologi Terhadap Kinerja Karyawan,” J. Ilm. Manajemen, Ekon. dan Akunt., vol. 2, no. 1, pp. 46–54, 2022, doi: 10.55606/jurimea.v2i1.113.
M. Rahmah and B. S. Ginting, “PENERAPAN DATA MINING DENGAN METODE ALGORITMA APRIORI UNTUK KORELASI UMUR, PANGKAT DAN PENDIDIKAN TERHADAP JABATAN PADA POLRES BINJAI,” J. MAHAJANA Inf., vol. 5, no. 1, pp. 56–65, 2020.
S. Sariani, D. Saripurna, R. Saragih, and I. Gultom, “Pengelompokan Data Pengguna Narkoba Yang Melakukan Program Rehabilitasi Rawat Jalan Menggunakan Metode Clustering,” Pelita Inform. Inf. dan Inform., vol. 11, no. 1, pp. 8–13, 2022.
N. Adha, L. T. Sianturi, and E. R. Siagian, “Implementasi Data Mining Penjualan Sabun Dengan Menggunakan Metode Apriori (Studi Kasus: PT. Unilever),” Inf. dan Teknol. Ilm., vol. 4, no. 3, 2017.
A. W. O. Gama, I. K. G. D. Putra, and I. P. A. Bayupati, “Implementasi Algoritma Apriori Untuk Menemukan Frequent Itemset Dalam Keranjang Belanja,” Maj. Ilm. Teknol. Elektro, vol. 15, no. 2, pp. 21–26, 2016.
I. K. D. A. Saputra, I. P. Satwika, and N. W. Utami, “Analisis Transaksi Penjualan Barang Menggunakan Metode Apriori pada UD. Ayu Tirta Manis,” J. Krisnadana, vol. 1, no. 2, pp. 11–20, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Artificial Intelligence and Engineering Applications (JAIEA)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.