Digital Image Processing On Kaffir Orange Peel With Canny Edge Detection Algorithm

Authors

  • Nurul Nurul Azmi Syahfitri STMIK Kaputama

DOI:

https://doi.org/10.59934/jaiea.v3i1.317

Keywords:

Digital Image, Kaffir lime, Canny edge detection algorithm

Abstract

Object tracking is a form of application of computer vision. To be able to track an object, a stage is needed in the image processing process. Image Processing is a field related to the process of image transformation (image). The image processing process is carried out to obtain better image quality. The harvesting system in kaffir lime is done manually, by choosing fruits whose skin color is green, and not yellowish. Due to the small and asymmetrical size and shape of kaffir lime, manual harvesting systems are still widely used to maintain the quality and quantity of the harvest. In addition, the manual harvesting system can also avoid damage to kaffir lime trees and obtain optimally ripe kaffir limes. Kaffir lime also has genders like humans, namely males and females. In male kaffir lime there is a circle that is more prominent in size underneath, while female kaffir lime has a flat shape. However, for consumption and medicinal purposes both male and female kaffir lime can be used without affecting the taste or quality of the fruit. With the image processing to determine the level of wrinkles on quality kaffir lime peel, kaffir lime will be selected which is usually used for herbal medicines. In this case, the Canny Edge Detection algorithm can be used to identify density edges in kaffir lime peels. Thus, the degree of wrinkles in kaffir lime peel can be calculated and measured to be more accurate. And can be separated quality or non-quality kaffir lime with the image of kaffir lime that has been seen through the image. The results obtained in designing and analyzing the quality of kaffir lime are clearer and more accurate with an image resolution value of 248 x 216 that the orange is included in the female kaffir lime type.The results tested that the right edge detection method in carrying out the edge detection process in the image of kaffir lime peel is the Canny Edge Detection Algorithm. By using the image on the Canny Edge Detection Algorithm, more dense and quality kaffir lime results are obtained so that it can be used for herbal medicine.

Downloads

Download data is not yet available.

References

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

B. Cahyono, “Penggunaan Software Matrix Laboratory (Matlab) Dalam Pembelajaran Aljabar Linier,” Phenom. J. Pendidik. MIPA, vol. 3, no. 1, pp. 45–62, 2016, doi: 10.21580/phen.2013.3.1.174.

K. Setyadjit, B. Hariadi, and J. T. Elektro, “Menentukan kualitas buah apel malang berdasarkan kulitnya memanfaatkan pengolahan citra digital,” J. Univ. 1945 Surabaya, vol. 25, no. 2, pp. 1–12, 2022.

I. D. Kurniawati and A. Kusumawardhani, “Implementasi Algoritma Canny dalam Pengenalan Wajah menggunakan Antarmuka GUI Matlab,” J. Inst. Teknol. Sepuluh Nop., no. December, pp. 3–8, 2017.

A. Rilo Pambudi, Garno, and Purwantoro, “JIP (Jurnal Informatika Polinema) DETEKSI KEASLIAN UANG KERTAS BERDASARKAN WATERMARK DENGAN PENGOLAHAN CITRA DIGITAL,” J. Inform. Polinema, vol. 6, no. 4, pp. 69–74, 2020.

S. Ratna, “Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm,” Technol. J. Ilm., vol. 11, no. 3, p. 181, 2020, doi: 10.31602/tji.v11i3.3294.

N. A. Khairudin and Wahyu Saputro, “Klasifikasi Kualitas Mutu Buah Delima Dengan Menggunakan Ekstraksi Gray Level Co-Occurrence Matrix (Glcm) Dan K-Nearest Neighbor (Knn),” J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 273–278, 2022, doi: 10.51401/jinteks.v4i3.1990.

Y. I. Masadi, T. Lestari, and I. K. Dewi, “Identifikasi Kualitatif Senyawa Terpenoid Ekstrak N- Heksana Sediaan Losion Daun Jeruk Purut (Citrus Hystrix Dc),” J. Kebidanan dan Kesehat. Tradis., vol. 3, no. 1, pp. 32–40, 2018, doi: 10.37341/jkkt.v3i1.63.

W. Supriyatin, “Perbandingan Metode Sobel, Prewitt, Robert dan Canny pada Deteksi Tepi Objek Bergerak,” Ilk. J. Ilm., vol. 12, no. 2, pp. 112–120, 2020, doi: 10.33096/ilkom.v12i2.541.112-120.

R. J. Hakim, Y. Mulyani, T. Y. Hendrawati, and Ismiyati, “Pemilihan Bagian Tanaman Jeruk Purut ( Citrus Hystrix d.c ) Potensial Sebagai Minyak Essensial Aromaterapi Hasil Proses Maserasi Dengan Metode Analytical Hierarkhi Process ( AHP ),” Semin. Nas. Sains dan Teknol., pp. 1–7, 2019.

Q. Budiman, S. Mouton, L. Veenhoff, and A. Boersma, “程威特 1 , 吴海涛 1 , 江 帆 2,” J. Inov. Penelit., vol. 1, no. 0.1101/2021.02.25.432866, pp. 1–15, 2021.

K. Satyawati, J. K. Tampubolon, and R. G. Santosa, “Analisis Gaussian Dan Edge Connection Dalam Penajaman Deteksi Tepi Menggunakan Metode Canny,” J. Inform., vol. 12, no. 1, pp. 33–42, 2016, doi: 10.21460/inf.2016.121.456.

Downloads

Published

2023-10-15

How to Cite

Nurul Azmi Syahfitri, N. (2023). Digital Image Processing On Kaffir Orange Peel With Canny Edge Detection Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(1), 315–322. https://doi.org/10.59934/jaiea.v3i1.317