Sunda Script Detection Using You Only Look Once Algorithm

Authors

  • Daffa Arifadilah Universitas Muhammadiyah Sukabumi
  • Asriyanik Universitas Muhammadiyah Sukabumi
  • Agung Pambudi Universitas Muhammadiyah Sukabumi

DOI:

https://doi.org/10.59934/jaiea.v3i2.443

Keywords:

YOLO v8, Sundanese Script Detection, Real-Time Object Recognition, mAP, F1-Confidence, Precision

Abstract

The Sundanese script is a writing system used in the Sundanese language, one of the regional languages of West Java, Indonesia. This study investigates the use of the YOLO v8 algorithm for the real-time video detection of Sundanese script. Various versions of YOLO v8, including YOLO v8n, v8s, v8m, v8l, and v8x, were tested to determine the most effective model. After a comprehensive evaluation involving the analysis of mean Average Precision (mAP), F1-Confidence, and precision, the study selected the YOLO v8s model as the primary detection method. YOLO v8s demonstrated superior performance with the highest mAP of 98.835%, an F1-Confidence of  98%, and a precision of 76,2%. This choice was based on a balance between high accuracy and computational efficiency. The results indicate significant potential for object recognition technology in the learning and preservation of Sundanese script.

Downloads

Download data is not yet available.

References

Anita Chaudhari, Brinzel Rodrigues, S. More. (2016a). Melestarikan Aksara Sunda Dengan Aplikasi Multimedia. Ucv, I(02), 390–392. http://dspace.unitru.edu.pe/bitstream/handle/UNITRU/10947/Miñano Guevara%2C Karen Anali.pdf?sequence=1&isAllowed=y%0Ahttps://repository.upb.edu.co/bitstream/handle/20.500.11912/3346/DIVERSIDAD DE MACROINVERTEBRADOS ACUÁTICOS Y SU.pdf?sequence=1&isAllowed=

A Baidillah, I., Darsa, Undang. A., Abdurahman, O., Permadi, T., Gunardi, G., Suherman, A., Ampera, T., Purba, H. S., Nugraha, D. T., & Sutisna, D. (2008). Direktori Aksara Sunda untuk Unicode. Pemerintah Provinsi Jawa Barat Dinas Pendidikan Provinsi Jawa Barat.

Bismantoko, D. H., Sriyanto, S., & Budiawan, W. (2015). Sistem Informasi Transportasi Umum Terintegrasi di Kota Semarang Menggunakan Algoritma Depth First Search (Dfs). Industrial Engineering Online Journal, 4(2).

Fatah, H., Ichsan, N., Wahyuni, T., Ernawati, E., & Indriyanti, I. (2020). RANCANG BANGUN PROGRAM APLIKASI PEMBELAJARAN AKSARA SUNDA BERBASIS ANDROID. SISTEMASI, 9(2). https://doi.org/10.32520/stmsi.v9i2.770

Holida, S. M., Alawiyah, T., & Sutisna, H. (2016). PENERAPAN ANIMASI INTERAKTIF DALAM PENGENALAN AKSARA SUNDA. Jurnal Informatika, 1(2). https://doi.org/10.31311/ji.v1i2.39.

Indra, I. (2019). Apa itu URL? Pengertian URL Beserta Fungsinya. In Niagahoster Blog. https://www.niagahoster.co.id/blog/apa-itu-url/.

Kanani, P., & Padole, M. (2019). Deep learning to detect skin cancer using google colab. International Journal of Engineering and Advanced Technology, 8(6). https://doi.org/10.35940/ijeat.F8587.088619

Krisdiawan, R. A., Fitriani, A., & Budianto, H. (2022). Penerapan Algoritma Recursive Backtracking Sebagai Maze Generator Pada Game Labirin Aksara Sunda. Media Jurnal Informatika, 14(1). https://doi.org/10.35194/mji.v14i1.2326

Lin, Q., Ye, G., Wang, J., & Liu, H. (2021). RoboFlow: a Data-centric Workflow Management System for Developing AI-enhanced Robots. Proceedings of Machine Learning Research, 164, 1789–1794.

Liu, R., & Ren, Z. (2021). Application of Yolo on Mask Detection Task. 2021 IEEE 13th International Conference on Computer Research and Development, ICCRD 2021. https://doi.org/10.1109/ICCRD51685.2021.9386366

Lutz O’reilly, M., Cambridge, B. •, Farnham, •, Koln, •, Paris, •, Sebastopol, •, Taipei, •, & Tokyo, •. (2019). Programming Python

Mulyana, D. I., & Rowis, M. A. I. (2022). Optimization of Text Mining Detection of Tajweed Reading Laws Using the Yolov8 Method on the Qur’an. QALAMUNA: Jurnal Pendidikan, Sosial, Dan Agama, 14(2), 1089–1110. https://doi.org/10.37680/qalamuna.v14i2.3866

Paulus, E., Hadi, S., Suryani, M., Suryana, I., & Simanjuntak, Y. D. (2019). Evaluating Ancient Sundanese Glyph Recognition Using Convolutional Neural Network. Journal of Physics: Conference Series, 1235(1). https://doi.org/10.1088/1742-6596/1235/1/012063

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December. https://doi.org/10.1109/CVPR.2016.91

Sari, D. P., & Mirza, A. H. (2022). THE DETECTION OF FACE RECOGNITION AS EMPLOYEE ATTENDANCE PRESENCE USING THE YOLO ALGORITHM (YOU ONLY LOOK ONCE). Jurnal Darma Agung, 30(3). https://doi.org/10.46930/ojsuda.v30i3.2187.

Setiawan, R. (2021). Flowchart Adalah: Fungsi, Jenis, Simbol, dan Contohnya. In Dicoding Blog. https://www.dicoding.com/blog/flowchart-adalah/

Tambunan, S., & Naibaho, P. (2021). DETEKSI OBJEK AKSARA BATAK TOBA MENGGUNAKAN FASTER R-CNN dan YOLOV3 DOKUMEN TUGAS AKHIR.

Terven, J. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. In Machine Learning and Knowledge Extraction (Vol. 5, Issue 4, pp. 1680–1716). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/make5040083

Wang, J., Li, L., & Zeller, A. (2020). Better Code, Better Sharing: On the Need of Analyzing Jupyter Notebooks. Proceedings - 2020 ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2020, 53–56. https://doi.org/10.1145/3377816.3381724

Wang, X., Zheng, S., Zhang, C., Li, R., & Gui, L. (2021). R-yolo: A real-time text detector for natural scenes with arbitrary rotation. Sensors (Switzerland), 21(3). https://doi.org/10.3390/s21030888

Wang, Y., Zou, H., Yin, M., & Zhang, X. (2023). SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature Fusion for Object Detection in UAV Scenes. Remote Sensing, 15(18). https://doi.org/10.3390/rs15184580

Xiao, L., Zhou, P., Xu, K., & Zhao, X. (2021). Multi-directional scene text detection based on improved yolov3. Sensors, 21(14). https://doi.org/10.3390/s21144870

Downloads

Published

2024-02-15

How to Cite

Arifadilah, D., Asriyanik, & Pambudi, A. (2024). Sunda Script Detection Using You Only Look Once Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(2), 606–613. https://doi.org/10.59934/jaiea.v3i2.443