Nutritional Analysis Of Traditional Indonesian Food Using Machine Learning

Authors

  • Fito Mardianto Universitas Bina Sarana Informatika
  • Faishal Nugraha Universitas Bina Sarana Informatika
  • Federico Anggito Ryseno Universitas Bina Sarana Informatika
  • Yoga Prasetyo Wibowo Universitas Bina Sarana Informatika
  • Eka Kusuma Pratama Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.59934/jaiea.v3i3.476

Keywords:

Nutritional analysis, Clustering, Traditional Indonesian food, RapidMiner Studio

Abstract

This research aims to analyze the nutritional composition of traditional Indonesian food using the clustering method. Nutritional data from 1,346 types of Indonesian food, including calories, protein, fat and carbohydrates, was analyzed with the help of RapidMiner Studio. The clustering results produced three main clusters: (1) foods low in nutrients, (2) foods high in nutrients, and (3) foods with moderate nutrients. Through statistical analysis, variations were found in the number of foods with certain nutritional values in each attribute. This research provides better insight into the nutritional composition of traditional Indonesian foods that are frequently consumed by the public. It is hoped that the results of this research can help individuals choose foods that suit their body's needs, as well as contribute to encouraging a healthier lifestyle in society.

Downloads

Download data is not yet available.

References

S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020, doi: 10.35760/tr.2020.v25i1.2677.

I. Nuryani and D. Darwis, “Analisis Clustering Pada Pengguna Brand Hp Menggunakan Metode K-Means,” Pros. Semin. Nas. Ilmu Komput., vol. 1, no. 1, pp. 190–211, 2021.

A. F. Sari, M. Safii, D. Suhendro, and I. S. Damanik, “Implementation Data Mining of Employement Contract Exten-sion at Indosat Using Naïve Bayes,” J. Artif. Intell. Eng. Appl., vol. 1, no. 1, 2021, doi: 10.59934/jaiea.v1i1.52.

Fica Oktavia Lusiana, “Analysis Of Multiple Regression Data Mining Methods On The Prediction Of Ibtidaiyah School Registration,” J. Artif. Intell. Eng. Appl., vol. 1, no. 3, 2022, doi: 10.59934/jaiea.v1i3.92.

J. Nasir, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 690–703, 2021, doi: 10.24176/simet.v11i2.5482.

S. B. Mayaza, R. Buaton, and S. Ramadani, “Application of Data Mining in Analyzing the Effect of Parents’ Employment and Education Level on Student Behavior Using the A PRIORI Method (Case Study: SDN 024769 Binjai),” J. Artif. Intell. Eng. Appl., vol. 3, no. 1, 2023, doi: 10.59934/jaiea.v3i1.279.

Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 192, 2020, doi: 10.24114/cess.v5i2.18519.

N. Edelwais, M. Simanjuntak, and M. Sihombing, “Regional Data Mining Implementation Of Contraceptive Equipment Users In The City Of Binjai By Type Using Clustering method,” J. Artif. Intell. Eng. Appl., vol. 3, no. 1, 2023, doi: 10.59934/jaiea.v3i1.284.

S. Hajar, A. A. Novany, A. P. Windarto, A. Wanto, and E. Irawan, “Penerapan K-Means Clustering pada ekspor minyak kelapa sawit menurut negara tujuan,” Semin. Nas. Teknol. Komput. Sains 2020, pp. 314–318, 2020.

A. R. Arianti, N. Novriyenni, and I. Ambarita, “The Grouping Of Types Of Tax Revenue In Binjai City Uses The K-Means Clustering Method Algorithm,” J. Artif. Intell. Eng. Appl., vol. 3, no. 1, 2023, doi: 10.59934/jaiea.v3i1.286.

Y. D. Darmi and A. Setiawan, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk,” J. Media Infotama, vol. 12, no. 2, pp. 148–157, 2017, doi: 10.37676/jmi.v12i2.418.

Erlisa Santri and D. Brahma, “Analysis Of Poverty Level Mapping In Riau Province Using The K-Means Method,” J. Artif. Intell. Eng. Appl., vol. 3, no. 2, 2024, doi: 10.59934/jaiea.v3i2.414.

P. Studi and S. Informasi, “Penerapan Metode K-Means Pada Pengelompokkan Pengangguran Di Indonesia,” vol. 6, pp. 61–74.

Z. Aras and Sarjono, “Analisis Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan Bedah Rumah Menggunakan Metode Clustering K-Means( Studi Kasus : Kantor Kecamatan Bahar Utara),” J. Manaj. Sist. Inf., vol. 1, no. 2, pp. 159–170, 2016.

D. Novianti, “Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner,” Paradig. - J. Komput. dan Inform., vol. 21, no. 1, pp. 49–54, 2019, doi: 10.31294/p.v21i1.4979.

B. Rahmat C.T.I. et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,” Semin. Nas. Ris. Kuantitatif Terap. 2017, no. April, pp. 58–60, 2017.

Downloads

Published

2024-06-15

How to Cite

Fito Mardianto, Faishal Nugraha, Federico Anggito Ryseno, Yoga Prasetyo Wibowo, & Eka Kusuma Pratama. (2024). Nutritional Analysis Of Traditional Indonesian Food Using Machine Learning. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(3), 644–649. https://doi.org/10.59934/jaiea.v3i3.476

Issue

Section

Articles