Image Processing for Freshness Identification Tilapia Using Backpropagation Algorithm (Case Study: Binjai City Food Security and Agriculture Office)
DOI:
https://doi.org/10.59934/jaiea.v3i3.478Keywords:
Image Processing, Freshness of tilapia,BackpropagationAbstract
Tilapia (Oreochromis niloticus) is a type of fish that comes from rivers and lakes that connect the river. Tilapia was imported to Indonesia officially by the Freshwater Fisheries Research Institute in 1969, Tilapia fish breeds in Indonesia come from Taiwan as for the dark color with vertical stripes as many as 6-8 pieces and the Philippines which is red. The problems faced today related to testing the level of freshness still use conventional methods, namely by only seeing and sorting fish by sight or sight only. This can certainly cause errors in choosing fish for ordinary people or who do not have expertise in choosing fresh fish. For this reason, a system is needed that can identify the freshness of tilapia using digital image management. Many methods are used in identifying an image, one of which is used by using the Backpropagation method.
Downloads
References
D. Bee, W. Weku, and A. Rindengan, “Aplikasi Penentuan Tingkat Kesegaran Ikan Selar Berbasis Citra Digital Dengan Metode Kuadrat Terkecil,” d’CARTESIAN, vol. 5, no. 2, p. 121, 2016, doi: 10.35799/dc.5.2.2016.14985.
V. suhartono T.Sutojo, Edy mulyanto, Kecerdasan Buatan. Yogyakarta: CV. Andi Offset. Yogyakarta, 2011.
M. D. Afriwanty, “Mempelajari Pengaruh Penambahan Tepung Rumput Laut (Kappaphycus alvarezii) Terhadap Karakteristik Fisik Surimi Ikan Nila (Oreochromis sp.),” Progr. Stud. Teknol. Has. Perikan. Fak. Perikan. Dan Ilmu Kelaut. Inst. Pertan. Bogor, 2008.
G. A. Away, The Shortcut of MATLAB Programming. Bandung: Informatika. Bandung, 2014.
A. S. Ayub et al., “Identifikasi Keanekaragaman Jenis Ikan Hasil Tangkapan Nelayan Tapak Paderi Kota Bengkulu,” Samakia J. Ilmu Perikan., vol. 13, no. 1, pp. 51–62, 2022, doi: 10.35316/jsapi.v13i1.1664.
M. Ulfa, “Penerapan Jaringan Syaraf Tiruan Prediksi Kebutuhan Alat Lampu Penerangan Jalan Umum (Lpju) Dengan Metode Backpropagation,” J. Abdi Ilmu, vol. 14, no. 1, pp. 59–65, 2021, [Online]. Available: https://journal.pancabudi.ac.id/index.php/abdiilmu/article/view/3935
N. Lestari and L. L. Van FC, “Implementasi jaringan syaraf tiruan untuk menilai kelayakan tugas akhir mahasiswa (studi kasus di amik bukittinggi),” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 8, no. 1, pp. 10–24, 2017, doi: 10.31849/digitalzone.v8i1.614.
D. Bee, W. Weku, and A. Rindengan, “Aplikasi Penentuan Tingkat Kesegaran Ikan Selar Berbasis Citra Digital Dengan Metode Kuadrat Terkecil,” d’CARTESIAN, vol. 5, no. 2, p. 121, 2016, doi: 10.35799/dc.5.2.2016.14985.
rendiarno rendiarno and H. Fahmi, “The Application of ANN Predicts Students’ Understanding of Subjects During Online Learning Using the Backpropagation Algorithm at SMAN 1 Perbaungan”, j. of artif. intell. and eng. appl., vol. 1, no. 3, pp. 174–182, Jun. 2022.
R. E. A. Tarigan and F. Y. Manik, “Artificial Neural Network for Classification of Dengue Fever Using Backpropagation Algorithm”, j. of artif. intell. and eng. appl., vol. 3, no. 1, pp. 468–478, Oct. 2023.
D. Widodo, A. Fauzi, and A. Sembiring, “Identification of Banana Fruit Types Using the Backpropagation Method”, j. of artif. intell. and eng. appl., vol. 3, no. 1, pp. 300–307, Oct. 2023.
Pandu Nugroho, “Prediction Of Customers at Bank Rakyat Indonesia Using Backpropagation Algorithm”, j. of artif. intell. and eng. appl., vol. 1, no. 3, pp. 220–225, Feb. 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Artificial Intelligence and Engineering Applications (JAIEA)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.