Optimization of Classification Algorithm with GridSearchCV and Hyperparameter Tuning for Sentiment Analysis of the Nusantara Capital City
DOI:
https://doi.org/10.59934/jaiea.v3i3.514Keywords:
Hyperparameter Tunning, Sentiment, Classification AlgorithmAbstract
The relocation of the country's capital has implications for social, economic, geographical and political aspects. This raises the public's views which are expressed in Twitter tweets that contain public sentiment. Sentiment analysis has a significant influence on understanding public views. Therefore, further research is needed related to the sentiment of analysis of the IKN. In this study, a model that can predict public sentiment is created by developing a model at the training stage using the GridSearchCV algorithm and hyperparameter tuning with several classification algorithms. The best model was produced with the Support Vector Machine classification algorithm that was able to outperform, compared to probability-based and tree-based classification algorithms with an accuracy of 69.95%.
Downloads
References
E. Nugrohosudin, “Kedudukan Kepala Otorita Ibu Kota Nusantara,” J. Legis., vol. 5, no. 2, pp. 79–90, 2022.
A. K. Santoso, A. Noviriandini, A. Kurniasih, B. D. Wicaksono, and A. Nuryanto, “Klasifikasi Persepsi Pengguna Twitter Terhadap Kasus Covid-19 Menggunakan Metode Logistic Regression,” JIK (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 234–241, 2021.
A. Supian, B. Tri Revaldo, N. Marhadi, L. Efrizoni, and R. Rahmaddeni, “Perbandingan Kinerja Naïve Bayes Dan Svm Pada Analisis Sentimen Twitter Ibukota Nusantara,” J. Ilm. Inform., vol. 12, no. 01, pp. 15–21, 2024.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, pp. 147–156, 2021.
C. Mulia and A. Kurniasih, “Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Bank Customer Churn Menggunakan Algoritma Naïve bayes dan Logistic Regression,” Pros. Semin. Ilm. Nas. Online Mhs. Ilmu Komput. dan Apl., pp. 552–559, 2023.
W. F. Hidayat, T. Asra, and A. Setiadi, “Klasifikasi Penyakit Daun Kentang Menggunakan Model Logistic Regression,” Indones. J. Softw. Eng., vol. 8, no. 2, pp. 173–179, 2022.
I. Irmawati, H. Hermanto, E. H. Juningsih, S. Rahmatullah, and F. Aziz, “Prediksi Lama Tinggal Pasien Rawat Inap Di Rumah Sakit Pada Masa Pandemi Covid-19 Menggunakan Metode Ensemble Learning Dan Decission Tree,” J. Inform. Kaputama, vol. 5, no. 2, pp. 391–397, 2021.
E. Priyanti, “Penerapan Decision Tree Untuk Klasifikasi Tingkat Pendapatan,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 7, no. 1, pp. 7–12, 2022.
N. Wuryani and S. Agustiani, “Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan,” J. Tek. Komput. AMIK BSI, vol. 7, no. 2, pp. 187–193, 2021.
Fajri Koto and Gemala Y. Rahmaningtyas, “InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs,” 2017 Int. Conf. Asian Lang. Process., pp. 391–394, 2017.
M. P. Pulungan, A. Purnomo, and A. Kurniasih, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 7, pp. 1493–1502, 2023.
Fatihah Rahmadayana and Yuliant Sibaroni, “Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 936–942, 2021.
A. B. Pohan, Irmawati, and A. Kurniasih, “Penerapan Teknik SMOTE dalam Memprediksi Kegagalan Mesin Menggunakan Support Vector Machine dan Logistic Regression,” J. Inform. Kaputama, vol. 7, no. 2, pp. 181–187, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Artificial Intelligence and Engineering Applications (JAIEA)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.