Application of KNN (K-Nearest Neighbor) in the Medical Dental Equipment Recommendation System at Rantauprapat Hospital Web Based
DOI:
https://doi.org/10.59934/jaiea.v4i1.615Keywords:
data collection, Recommendation System, web, K-Nearest Neighbor (KNN)Abstract
The development of information technology currently has a very important role and can be utilized in facilitating all human activities from various aspects, including activities that take place in the health sector such as hospitals which already use many information systems specifically designed to handle various supplies or inventory. At the Rantau Prapat Regional Hospital, data collection on medical equipment supplies still uses manual methods, namely visiting and recording the equipment that needs to be equipped to each polyclinic one by one, which takes quite a long time and the medical equipment inventory team has difficulty prioritizing which tools must be equipped first for each polyclinic, so that continue to maintain the number of treatment numbers in each clinic, especially in dental and oral clinics. Therefore, we need a system for recommending dental medical equipment based on the dental diseases frequently suffered by patients and the number of treatments per year. In building a web-based dental medical tool recommendation system, researchers used the K-Nearest Neighbor (KNN) algorithm method to classify new objects based on attributes and training samples. The working principle of KNN is to find the shortest distance between the data used and its K closest neighbors in the training data and produce more accurate and effective data.
Downloads
References
B. S. Damanik, R. A. Putri, and A. M. Harahap, “Implementasi Metode Webqual 4.0 Dalam Mengevaluasi Sistem Informasi Akademik Uin Sumatera Utara,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 8, no. 1, pp. 15–23, 2024, doi: 10.59697/jtik.v8i1.489.
S. Astuti, Samsudin, and Triase, “Penerapan Data Mining Dalam Menentukan Penerima Beasiswa UPZ (Unit Pengumpulan Zakat) Menggunakan Algoritma K-MEANS,” J. Sist. Inf., vol. 13, no. 2, 2021.
H. Habib Hasbullah and H. Arrasyid, “Implmentasi Sistem Informasi Data Gudang Barang Menggunakan Bahasa Pemerogman Java Netbeans,” J. Tek. Ind. Sist. Inf. dan Tek. Inform., vol. 1, no. 1, pp. 21–24, 2022, [Online]. Available: https://ejournal.ubibanyuwangi.ac.id/index.php/jurnal_tinsika
M. R. Ravi, I. Indriati, and S. Adinugroho, “Implementasi Algoritme Modified K-Nearest Neighbor (MKNN) untuk Mengidentifikasi Penyakit Gigi dan Mulut,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2596–2602, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4758
I. S. Widyasari and T. Yustiawan, “Manajemen Peralatan Kesehatan Klinik Medical Center PTN di Jawa Timur,” Jph Recode, vol. 3, no. 2, pp. 95–106, 2020, [Online]. Available: http://e-journal.unair.ac.id/JPHRECODE
S. R. Ngeo and Latipah, “Penerapan Metode Decision Tree Untuk Rekomendasi Tujuan Poli Pada Rumah Sakit Umum Daerah Bajawa,” Antivirus J. Ilm. Tek. Inform., vol. 15, no. 1, pp. 62–74, 2021, doi: 10.35457/antivirus.v15i1.1289.
Suendri, A. Harahap, A. Nasution, and S. Kartika, “Analisis Sistem Pendukung Keputusan Penentuan Lulusan Terbaik Menggunakan Lima Algoritma Pada Program Studi Sistem Informasi UIN Sumatera Utara Medan,” AL-ULUM J. SAINS DAN Teknol., vol. 7, Feb. 2022, doi: 10.31602/ajst.v7i1.5839.
D. S. Azhari, Z. Afif, M. Kustati, and N. Sepriyanti, “Penelitian Mixed Method Research untuk Disertasi,” Innov. J. Soc. Sci. Res., vol. 3, no. 2, pp. 8010–8025, 2023.
S. R. Setiyani, “Penerapan Algoritma K-Nearest Neighbor untuk prediksi harga cabai rawit di Yogyakarta,” Universitas Sanata Dharma, 2020.
M. Alda, M. Nazar, A. Hrp, H. Saragih, and R. Siddik Margolang, “Perancangan Sistem Informasi Kehadiran Dosen Dalam Masuk Kelas Di Fakultas Sains Dan Teknologi Universitas Islam Negeri Sumatera Utara Berbasis Mobile Menggunakan Metode Waterfall,” J. Comput. Eng. Sci., vol. 2, p. 8, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.