Clustering Students Level of Understanding of Programming Language Courses Using the K-Means Algorithm

Authors

  • Noval Ramadana STMIK KAPUTAMA
  • Yani Maulita STMIK KAPUTAMA
  • Hermansyah Sembiring STMIK KAPUTAMA

DOI:

https://doi.org/10.59934/jaiea.v4i1.650

Keywords:

K-Means, Clustering, Student Understanding, Programming Language, Data Mining

Abstract

This study aims to categorize students based on their level of understanding of programming language courses using the K-Means algorithm. Students often experience difficulties in understanding the basic concepts of programming languages, which can affect their ability to solve programming problems. Using data obtained from questionnaires filled out by STMIK Kaputama Binjai students, this study analyzed variables such as attendance rate, learning interest, and level of understanding. The analysis results show the existence of patterns and relationships between these variables, which can be used to identify groups of students who have a good, poor, or no understanding of the course. This research is expected to provide input for educational institutions in designing learning strategies that are more effective and attractive to students.

Downloads

Download data is not yet available.

References

Halimah, D., Ridwan, M., Stikom, L., Bangsa, T., & Saputra, W. (2022). Algoritma C4.5 Untuk Menentukan Klasifikasi Tingkat Pemahaman Mahasiswa Pada Matakuliah Bahasa Pemrograman. Jurnal Teknik Mesin, Industri, Elektro Dan Informatika (JTMEI), 1(3).

Abdurrahman, G. (n.d.). Clustering Data Ujian Tengah Semester (UTS) Data Mining Menggunakan Algoritma K-Means.

Ishak, R. (2022). Clustering Tingkat Pemahaman Dasar Mahasiswa Pada Pra-Perkuliahan Probabilitas Statistika Dengan Metode K-Means. 4.

Sagala, R. M. (n.d.). Prediksi Kelulusan Mahasiswa Menggunakan Data mining Algoritma K-means.

Dan, P., Pemrograman, B., & Saragih, R. R. (n.d.). STMIK-STIE Mikroskil. https://www.researchgate.net/publication/329885312

Downloads

Published

2024-10-15

How to Cite

Ramadana, N., Yani Maulita, & Sembiring, H. (2024). Clustering Students Level of Understanding of Programming Language Courses Using the K-Means Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(1), 427–432. https://doi.org/10.59934/jaiea.v4i1.650