Classification of Tile Productivity Data Based on Tile Type Using Random Forest Algorithm in Langkat Regency
DOI:
https://doi.org/10.59934/jaiea.v4i1.670Keywords:
Keywords: Random Forest, Classification, Cropping, MatlabAbstract
This study aims to classify data on the productivity of census in Langkat Regency based on the type of census by using the Random Forest algorithm. Ubinan is a method used to measure the productivity of food crops, and in this study, the data was processed with various variables such as planting area, type of fertilizer, type of pesticide, and production volume. The Random Forest algorithm was used to build a classification model that could predict the productivity of the tares with very high accuracy, reaching 99.58% in the training stage. The model categorizes the productivity of the samples into several levels, namely Very Low, Low, Medium, High, and Very High. The implementation of this system is also equipped with a MATLAB GUI interface, which makes it easier for users to train and test data efficiently. With this system, users can see the prediction results through intuitive visualization. This research is expected to help farmers and policy makers in improving agricultural productivity through data-based analysis.
Downloads
References
Abidin, Z. (2022). Paradigma Usaha Tani Tanaman Ternak Terintegrasi Optimal: Perspektif Sumber Daya Terbatas dan Musim Berbeda. Penerbit Nem.
Aini, Z. Implementasi Random Forest dan Gradient Boosting Pada Klasifikasi Indeks Pembangunan Manusia (Ipm) (Bachelor's thesis, Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta).
Amalia, R. (2020). Penerapan data mining untuk memprediksi hasil kelulusan siswa menggunakan metode naïve bayes. Jurnal Informatika Dan Sistem Informasi, 6(1), 33 42.
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest. Sistemasi, 10 (1), 163.
Dahlan, I. A. (2022). Klasifikasi Cuaca Provinsi Dki Jakarta Menggunakan Algoritma Random Forest Dengan Teknik Oversampling. Jurnal Teknoinfo, 16(1), 87-92. DR HA Rusdiana, M. M. (2021). Sistem informasi manajemen pendidikan: Konsep, prinsip, dan aplikasi.
Fitrah Ilhami. Hartatik, H., Kwintiana, B., Nengsih, T. A., Baradja, A., Harto, B., Sudipa, I. G. I., ... & Gugat, R. M. D. (2023). DATA SCIENCE FOR BUSINESS: Pengantar & Penerapan Berbagai Sektor. PT. Sonpedia Publishing Indonesia.
Helsalia, A., Pratama, H., Kristiani, M., & Marpaung, Y. B. (2021). Perancangan Aplikasi Pemesanan Obat di Apotek Dengan Analisis Design UML yang Menerapkan GIS dan LBS. J. Tek. Inform. Penerapan GIS dan LBS pada Anal. Des. UML, 1(1).
Masdian, A. R., Bashit, N., & Hadi, F. (2023). ANALISIS PRODUKTIVITAS PADI MENGGUNAKAN ALGORITMA MACHINE LEARNING RANDOM FOREST DI KABUPATEN BATANG TAHUN 2018-2022. Elipsoida: Jurnal Geodesi dan Geomatika, 6(1), 43-51.
Putra, R. F., Zebua, R. S. Y., Budiman, B., Rahayu, P. W., Bangsa, M. T. A., Zulfadhilah, M., ... & Andiyan, A. (2023). Data Mining: Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia.
Rezki, M., Kholifah, D. N., Faisal, M., Priyono, P., & Suryadithia, R. (2020). Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes. Jurnal Infortech, 2(2), 264-270.
Ruslan, K. (2019). Memperbaiki Data Pangan Indonesia Lewat Metode Kerangka Sampel Area.
Saleh, J., Adrian, A., & Sanger, J. (2022). SISTEM KLASIFIKASI KELULUSAN MAHASISWA DENGAN ALGORITMA RANDOM FOREST. Jurnal Ilmiah Realtech, 18(1), 10-14. Sari, I. R. F., & Utami, A. (2021). Rekayasa Perangkat Lunak Berorientasi Objek Menggunakan PHP. Penerbit Andi.
Setiawan, Z., Fajar, M., Priyatno, A. M., Putri, A. Y. P., Aryuni, M., Yuliyanti, S., ... & Wijaya, A. (2023). Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia.
Timisela, N. R., Turukay, M., Parera, W. B., & LAWALATA, M. (2021). Efisiensi relatif agroindustri pala banda dengan pendekatan Data Envelopment Analysis (DEA). SEPA: Jurnal Sosial Ekonomi Pertanian dan Agribisnis, 9(1).
Triscowati, D. W., Sartono, B., Kurnia, A., Dirgahayu, D., & Wijayanto, A. W. (2020). Classification of rice-plant growth phase using supervised random forest method based on landsat-8 multitemporal data. International Journal of Remote Sensing and Earth Sciences (IJReSES), 16(2), 187-196.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.