Analysis and Comparison of the Performance of K-Means Algorithm and X-Means Algorithm in Disease Type Clustering in Mitra Medika Hospital

Authors

  • Herdawani Afdilla Universitas Muhammadiyah Sumatera Utara
  • Wilda Rina Hasibuan Universitas Muhammadiyah Sumatera Utara

DOI:

https://doi.org/10.59934/jaiea.v4i1.696

Keywords:

Clustering, K-Means Algorithm, X-Means Algorithm, Types of Disease, Comparison.

Abstract

The system used by the hospital is currently still manual in managing patient data and information. What happened at Mitra Medika Hospital is that it is difficult to provide medical needs related to the patient's illness, considering the many types of illnesses that provide many medical needs. Several inpatients have used BPJS facilities with various illnesses suffered by patients to undergo further examinations in order to recover from the illness they are suffering from. Mitra Medika Hospital only sees medical needs based on the illness suffered by the patient, but seeing the large amount of patient history data makes it very difficult for Mitra Medika Hospital to find out the group of illnesses that patients often experience. This study uses a quantitative approach which starts from a theoretical framework, expert ideas, or researchers' understanding based on their experience, then developed into problems and their solutions that are submitted to obtain justification (verification) or assessment in the form of empirical data support in the field. Here, a data mining pattern is applied where this data mining is a very large data mining (big data). Cluster 0: From 245 Men (Suffering Between Diseases 1-5) Cluster 1: From 255 Women (Suffering Between Diseases 6-10) By using the K-Means Algorithm and the X-Means Algorithm, clustering can be produced. By using the Disease History data, the K-Means Algorithm and the X-Means Algorithm methods can be applied to determine clusters. By using web programming, it can produce an Analysis and Comparison of the Performance of the K-Means Algorithm and the X-Means Algorithm in Clustering Types of Diseases at Mitra Medika Hospital.

Downloads

Download data is not yet available.

References

Adil, A., Darma, I. M. Y., Heroe Santoso, & Lalu Sofiyandi Prayatna. (2023). Penerapan Algoritma K-Means Berbasis Spasial Untuk Pengelompokan Potensi Virus Covid-19 Di Kabupaten Dompu. SATIN - Sains dan Teknologi Informasi, 9(1), 64–73.

Al Amin, M., & Juniati, D. (2021). Math Unesa. Jurnal Ilmiah Matematika, 9(2), 437–446. https://media.neliti.com/media/publications/249234-model- infeksi-hiv-dengan-pengaruh-percob-b7e3cd43.pdf

Aldiyatna, K., Rahaningsih, N., & Dana, R. D. (2024). Penerapan Data Mining UntuK - clustering Penyakit Diare Menggunakan Algoritma K-Means ( Studi Kasus : Puskesmas Beber ). 8(3), 3124–3131.

[Bayu Prasetyo, R., Agus Pranoto, Y., & Primaswara Prasetya, R. (2023). Implementasi Data Mining Menggunakan Algoritma K-Means Clustering Penyakit Pasien Rawat Jalan Pada Klinik Dr. Atirah Desa Sioyong, Sulteng. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2144–2151.

Cahyo Nugroho, A. (2019). Rancang Bangun Sistem Informasi Manajemen Surat Tugas Berbasis Web Menggunakan Waterfall Model. Jurnal Informatika: Jurnal Pengembangan IT, 4(2), 146–151.

Fitri, E. (2020). Sentiment Analysis of the Ruangguru Application Using Naive Bayes, Random Forest and Support Vector Machine Algorithms. Jurnal Transformatika, 18(1), 71.

Hermawan, Y. (2023). Comparison of K-Means Clustering Algorithm with Naive Bayes Clussifier Algorithm to Know Students Reading Interest Using Library Data Mining. Journal of Computer Science and Big Data, 1(September), 20–25.

Mahatmi, M. W., & Sebatubun, M. M. (2022). Strategi Komunikasi Stakeholders Dengan Pendekatan Data Alumni Menggunakan Data Mining. PRecious: Public Relations Journal, 2(1), 26–42.

Nurhakim, B., Septiani, I., Anam, K., & Pratama, D. (2024). Penarapan Algoritma K-Means Clustering Dalam Menganalisis Resiko Penyakit Stroke. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 318–322.

Noor, H., Dharmawati, A., & Qur’ana, T. W. (2021). Penerapan Algoritma K- Means Clustering Analysis Pada Kasus Penderita Hiv/Aids (Studi Kasus Kabupaten Banjar). Technologia: Jurnal Ilmiah, 12(2), 72.

Parlika, R., & Pratama, A. (2019). Aplikasi Mesin Penjawab Pesan Berbasis Bot Telegram, Php, Dan Mysql. SCAN - Jurnal Teknologi Informasi dan Komunikasi, 14(3), 1–9.

Downloads

Published

2024-10-15

How to Cite

Herdawani Afdilla, & Hasibuan, W. R. (2024). Analysis and Comparison of the Performance of K-Means Algorithm and X-Means Algorithm in Disease Type Clustering in Mitra Medika Hospital. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(1), 580–587. https://doi.org/10.59934/jaiea.v4i1.696