Improving Regional Clustering Based on Tuberculosis Cases using the K-Means Algorithm of the Cirebon City Health Office
DOI:
https://doi.org/10.59934/jaiea.v4i2.727Keywords:
Tuberculosis, K-means, Clustering, Health Office, Davies-Bouldin Index.Abstract
Tuberculosis (TB) is a highly infectious disease prevalent in Indonesia, including Cirebon City. This study utilizes the K-Means algorithm to optimize the clustering of areas based on TB case data from the Cirebon Health Office. By analyzing the number of cases, population density, and other factors, the study aims to identify regional clusters with similar TB case characteristics. The research employed Rapid Miner software and the Knowledge Discovery Database (KDD) methodology. The K-Means analysis categorized the study area into two clusters. Cluster_0, representing 20 areas, had lower TB risk, characterized by higher population density, smaller geographic size, and fewer TB cases. Cluster_1, representing two areas, exhibited higher TB risk, marked by lower population density, larger area, and more TB cases. The clustering quality was evaluated using the Davies-Bouldin Index (DBI), which yielded an optimal value of 0.189 at K=2K = 2. Additionally, the Avg within Centroid Performance Vector Analysis supported the clustering validity the clusters with value of 19851032.925.The results demonstrate that this clustering approach effectively identifies TB risk areas, aiding targeted interventions. The findings provide the Cirebon Health Office with a framework for better resource allocation, focusing intensive programs in high-risk regions and preventive measures in low-risk areas.
Downloads
References
K. A. Yatna, N. Rahaningsih, and R. D. Dana, “Penerapan Data Mining untuk Clustering Penyakit Diare Menggunakan algoritma K-Means (Studi Kasus: Puskesmas Beber),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3124–3131, 2024, doi: 10.36040/jati.v8i3.9616.
Y. P. Sari, A. Primajaya, and A. S. Y. Irawan, “Implementasi Algoritma K-Means untuk Clustering Penyebaran Tuberkulosis di Kabupaten Karawang,” INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, pp. 229–239, 2020, doi: 10.35314/isi.v5i2.1457.
M. Ula, A. Zulfikri, A. F. Ulva, and R. A. Rizal, “Penerapan Machine Learning Clustering K-Means dan Linear Regression Dalam Penentuan Tingkat Resiko Tuberkulosis Paru,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 336–348, 2023, doi: 10.33022/ijcs.v12i1.3162.
S. Gymnastiar and A. Bahtiar, “PENERAPAN ALGORIMA K-MEANS CLUSTERING UNTUK MENGELOMPOKAN DATA KEJADIAN KEKERINGAN DI KABUPATEN CIREBON,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2325–2331, 2024, doi: 10.36040/jati.v8i2.8948.
R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.
K. Kodratul Munawar and A. Irma Purnamasari, “Implementasi Algoritma K-Means Clustering Pada Klasterisasi Kasus Hiv Di Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1092–1099, 2023, doi: 10.36040/jati.v7i2.6372.
I. K. Fauzi, B. A. Dermawan, and T. Padilah, “Penerapan K-Means Clustering pada Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Kabupaten Karawang,” J. Sist. dan Inform., vol. 15, no. 1, pp. 81–87, 2020, doi: 10.30864/jsi.v15i1.350.
R. Anggraini, E. Haerani, J. Jasril, and I. Afrianty, “Pengelompokkan Penyakit Pasien Menggunakan Algoritma K-Means Rahayu,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 6, pp. 1840–1849, 2022, doi: 10.30865/jurikom.v9i6.5145.
S. D. D. Paramewari, B. Nugraha, and Siska, “ANALISIS CLUSTERING PENYEBARAN HIV DI KARAWANG BERDASARKAN KECAMATAN DENGAN ALGORITMA K-MEANS,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4878.
I. J. Putri, F. Riana, and B. Wulandari, “Pengelompokan Kasus Tuberculosis Dengan Algoritma K-Means Berdasarkan Kelurahan di Kota Bogor,” J. Inform., vol. 11, no. 1, pp. 42–48, 2024, doi: 10.31294/inf.v11i1.20042.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.