Improving the Education Development Contribution Payment Model at SMK Istiqomah Maruyung Using the C4.5 Algorithm

Authors

  • Noviyanti STMIK IKMI Cirebon
  • Ade Irma Purnamasari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Edi Tohidi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.729

Keywords:

Data mining, student compliance, tuition payment, c4.5 algorithm

Abstract

 

Payment of tuition fees is one of the important aspects of school financial management. At SMK Istiqomah Maruyung, the management of SPP payments is still done manually, which causes student non-compliance in paying on time. The purpose of the research is to improve the SPP payment model by using the C4.5 algorithm to classify the level of student compliance and identify the main factors that influence late payments. The method used is the Knowledge Discovery in Databases (KDD) approach which includes the stages of data selection, preprocessing, transformation, data mining, and result evaluation. The research data was taken from 206 students in the 2023/2024 academic year with attributes such as parental income, number of siblings, scholarship status, and academic grade point average. The C4.5 algorithm was applied to build a decision tree model, with evaluation using five-fold cross validation. The result of this study is that the C4.5 algorithm is able to classify student compliance levels with an average accuracy of 93.55%. The main factors that influence late payment are academic grade point average, class, and parental income. Although the model is very good at predicting compliant students (precision 95%, recall 98%), it shows weakness in predicting lateness (precision 67%, recall 40%). It is concluded that the C4.5 algorithm can improve the efficiency of managing tuition payments and provide data-driven insights for policy making. With further implementation, this algorithm is expected to be adopted by other educational institutions to address similar challenges in financial management.

Downloads

Download data is not yet available.

References

B. Angkoso and I. Irmayansyah, “Penerapan Algoritma C4.5 Untuk Prediksi Keterlambatan Pembayaran Sumbangan Pembinaan Pendidikan (SPP) Santri,” TeknoIS J. Ilm. Teknol. Inf. dan Sains, vol. 13, no. 1, pp. 13–23, 2023, doi: 10.36350/jbs.v13i1.166.

L. Rosiana, “Analisis Kemungkinan Keterlambatan Pembayaran SPP Menggunakan Algoritma Support Vector Machine(Studi Kasus Smp Perintis 2 Bandar Lampung),” Ilmu Data, vol. 2, no. 9, pp. 1–11, 2022, [Online]. Available: http://repository.teknokrat.ac.id/2837/1/b116311150.pdf

Z. Gustiana, “Performance Evaluation Algoritma C 4.5 Pada Klasifikasi Data,” Djtechno J. Teknol. Inf., vol. 5, no. 2, pp. 289–296, 2024, doi: 10.46576/djtechno.v5i2.4654.

S. Juwita, R. Muliono, and mutahir, “Implementasi Algoritma C4 . 5 Untuk Klasifikasi Penentuan Penerima Bantuan Langsung Tunai Di Desa Tanjung Rejo The Implementation of the C4 . 5 Algorithm for the Determination Classification of Direct Cash Assistance ( BLT ) Recipients in Tanjung Rejo Vil,” Jitek:Jurnal Ilmiah Teknik Informatika Dan Elektro, vol. 1, no. 2. pp. 92–95, 2022. doi: 10.31289/jitek.v1i2.1474.

Y. Steven, Arif Bijaksana Putra Negaraa, “Implementasi Algoritma K-Nearest Neighbor Untuk Mengklasifikasi Masa Studi Mahasiswa Informatika Universitas Tanjungpura,” J. Sist. dan Teknol. Inf., vol. 10, no. 3, p. 311, 2022, doi: 10.26418/justin.v10i3.56804.

S. S. Bahri, “Implementasi Data Mining Untuk Memprediksi Keterlambatan Jam Masuk Kerja Menggunakan Algoritma Klasifikasi,” J. Sist. Inf., vol. 1, no. 1, pp. 11–20, 2020, doi: 10.32546/jusin.v1i1.854.

M. R. Akhmad and T. A. Y. Siswa, “Implementasi K-Nearest Neighbor Dalam Memprediksi Keterlambatan Pembayaran Biaya Kuliah Di Perguruan Tinggi,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 185, 2022, doi: 10.35889/progresif.v18i2.921.

H. Umar, R. Kusumawati, M. Imamudin, and M. A. Rohman, “Klasifikasi Keterlambatan Pembayaran Sumbangan Pembinaan Pendidikan Menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” TIN Terap. Inform. Nusant., vol. 4, no. 11, pp. 709–718, 2024, doi: 10.47065/tin.v4i11.4969.

P. devi Yuliana, “Optimalisasi Pembayaran Spp Berbasis Web Dengan Framework Codeigniter Pada Smk Terpadu Bina Insan Mandiri Optimization of Web-Based Spp Payments With Codeigniter Framework At Bina Insan Mandiri Integrated Vocational School,” J. Inf. Technol. Comput. Sci., vol. 7, no. 4, pp. 1315–1322, 2024.

M. I. Siti Chodijah, “PENENTUAN PENERIMA BEASISWA DI STIK BANI SALEH DENGAN PERBANDINGAN METODE ALGORITMA C4.5 DAN KNEAREST NEIGHBORS,” J. Inf. dan Komput., vol. 10, no. 1, p. 15, 2022.

K. Gustipartsani, N. Rahaningsih, R. Danar Dana, and I. Yulia Mustafa, “Data Mining Clustering Menggunakan Algoritma K-Means Pada Data Kunjungan Wisatawan Di Kabupaten Karawang,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3595–3601, 2024, doi: 10.36040/jati.v7i6.8282.

Downloads

Published

2025-06-15

How to Cite

Noviyanti, Purnamasari, A. I., Bahtiar, A., & Tohidi, E. (2025). Improving the Education Development Contribution Payment Model at SMK Istiqomah Maruyung Using the C4.5 Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1532–1537. https://doi.org/10.59934/jaiea.v4i3.729

Issue

Section

Articles