Comparison of Sentiment Analysis Models Enhanced by Naïve Bayes and Support Vector Machine Algorithms on Mobile Banking BRImo Reviews

Authors

  • Muhamad Firly Ramadan STMIK IKMI Cirebon
  • Martanto STMIK IKMI Cirebon
  • Arif Rinaldi Dikananda STMIK IKMI Cirebon
  • Ahmad Rifa'i STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.732

Keywords:

Naïve Bayes, Support Vector Machine, Machine Learning, KDD, Brimo, Sentiment Analysis, Mobile Banking.

Abstract

This study compares the effectiveness of the Support Vector Machine (SVM) and Naïve Bayes algorithms in classifying user sentiment regarding the BRImo application. User reviews were obtained from the Google Play Store platform and underwent a text preprocessing stage to clean and prepare the data. Subsequently, the SVM and Naïve Bayes algorithms were applied for sentiment analysis, using evaluation metrics such as accuracy, precision, recall, and F1-score. The results show that SVM achieved a training accuracy of 95.67% and a testing accuracy of 83.11%, with its best performance on positive sentiment (precision 92.26%, recall 91.79%, F1-score 92.02%) and moderate performance on negative sentiment (precision 62.81%, recall 62.81%, F1-score 62.81%). Meanwhile, Naïve Bayes recorded a training accuracy of 95.23% and a testing accuracy of 82.77%, with its highest performance on positive sentiment (precision 90.12%, recall 93.38%, F1-score 91.72%) but lower performance on negative sentiment (precision 65.07%, recall 60.06%, F1-score 62.46%). In terms of sentiment distribution, SVM was more effective in handling sentiment variations, particularly in detecting negative and neutral sentiments. These findings indicate that SVM outperforms Naïve Bayes in sentiment analysis of user reviews for the BRImo application.

Downloads

Download data is not yet available.

References

M. Khoirul, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” 2023.

E. T. Handayani and A. Sulistiyawati, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan Dengan Metode Klasifikasi Naive Bayes,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 3, pp. 32–37, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

B. B. Suherman, “Sistem Pakar Diagnosa Penyakit Dan Hama Pada Tanaman Jagung Menggunakan Metode Naive Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 2, no. 3, pp. 390–398, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika

D. Atika, A. Ari Aldino, S. Informasi, J. Pagar Alam No, L. Ratu, and K. Kedaton, “Term Frequency-Inverse Document Frequency Support Vector Machine Untuk Analisis Sentimen Opini Masyarakat Terhadap Tekanan Mental Pada Media Sosial Twitter,” 2022. [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

A. Muzaki and A. Witanti, “Sentiment Analysis Of The Community In The Twitter To The 2020 Election In Pandemic Covid-19 By Method Naive Bayes Classifier,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 2, pp. 101–107, Mar. 2021, doi: 10.20884/1.jutif.2021.2.2.51.

S. N. Rismanah, R. Astuti, and F. M. Basysyar, “Penerapan Algoritma Support Vector Machine Dalam Menganalisis Sentimen Ulasan Pelanggan Shopeefood Berdasarkan Twitter,” 2024.

N. Satya Marga, A. Rahman Isnain, and D. Alita, “Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” Abstrak, vol. 453, no. 4, pp. 453–463, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika

J. Devlin, M.-W. Chang, and K. Lee, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” [Online]. Available: https://github.com/tensorflow/tensor2tensor

F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP.” [Online]. Available: https://huggingface.co/

R. T. Aldisa and P. Maulana, “Analisis Sentimen Opini Masyarakat Terhadap Vaksinasi Booster COVID-19 Dengan Perbandingan Metode Naive Bayes, Decision Tree dan SVM,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 106–109, Jun. 2022, doi: 10.47065/bits.v4i1.1581.

S. A. Sutresno, “Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 4, Mar. 2023, doi: 10.47065/bits.v4i4.3149.

I. R. Afandi, F. Noor, H. #2, A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes.” [Online]. Available: https://t.co/2HAdwg1drL

Fitri Wulandari, Elin Haerani, Muhammad Fikry, and Elvia Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 1, pp. 88–96, May 2023, doi: 10.37859/coscitech.v4i1.4781.

Downloads

Published

2025-02-15

How to Cite

Ramadan, M. F., Martanto, Dikananda, A. R., & Rifa’i, A. (2025). Comparison of Sentiment Analysis Models Enhanced by Naïve Bayes and Support Vector Machine Algorithms on Mobile Banking BRImo Reviews. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 677–686. https://doi.org/10.59934/jaiea.v4i2.732