House Price Prediction Analysis Using a Comparison of Machine Learning Algorithms in the Jabodetabek Area

Authors

  • Indah Ratna Ningsih STMIK IKMI Cirebon
  • Ahmad Faqih STMIK IKMI Cirebon
  • Ade Rizki Rinaldi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.733

Keywords:

House Price, Multiple Linear Regression, Random Forest Regression, Machine Learning, Prediction

Abstract

Jabodetabek, as the largest metropolitan area in Indonesia, has complex property price dynamics, making it difficult for developers and buyers to determine house prices. This study aims to analyze and compare  the performance of the Multiple Linear Regression and Random Forest Regression algorithms in predicting house prices in the region. The data was obtained through scraping techniques from the rumah123.com website in October 2024, covering 999 data points with variables such as price, location, building area, land area, number of bedrooms, bathrooms, and garages. A comparative approach with cross-validation was applied to evaluate the performance of both algorithms using the metrics MAE, MSE, RMSE, MAPE, and R². The research results show that Random Forest Regression using GridsearchCV has better predictive performance, with an MAE value of Rp.645,764,815, MAPE of 28.12%, and R² of 0.864. The main factors influencing house prices in Jabodetabek include building size, land size, number of bedrooms, bathrooms, garages, and location. This finding emphasizes the superiority of Random Forest Regression in capturing complex data patterns and the significant role of these variables in determining house prices.

Downloads

Download data is not yet available.

References

C. Haryanto, N. Rahaningsih, and F. M. Basysyar, “Komparasi Algoritma Machine Learning Dalam Memprediksi Harga Rumah,” Jurnal Mahasiswa Teknik Informatika (JATI), vol. 7, no. 1, pp. 533–539, Feb. 2023.

A. Hjort, J. Pensar, I. Scheel, and D. E. Sommervoll, “House Price Prediction With Gradient Boosted Trees Under Different Loss Functions,” Journal of Property Research, vol. 39, no. 4, pp. 338–364, 2022, doi: 10.1080/09599916.2022.2070525.

S. Saadah and H. Salsabila, “Jurnal Politeknik Caltex Riau Prediksi Harga Bitcoin Menggunakan Metode Random Forest (Studi Kasus: Data Acak Pada Awal Masa Pandemic Covid-19),” May 2021. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/

S. Fachid and A. Triayudi, “Perbandingan Algoritma Regresi Linier dan Regresi Random Forest Dalam Memprediksi Kasus Positif Covid-19,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, p. 68, Jan. 2022, doi: 10.30865/mib.v6i1.3492.

I. M. Mufidah, H. Basuki, P. Ilmu, and K. Masyarakat, “Analisis Regresi Linier Berganda Untuk Mengetahui Faktor Yang Mempengaruhi Kejadian Stunting Di Jawa Timur,” Indonesian Nursing Journal of Education and Clinic, vol. 3, no. 3, pp. 51–59, Mar. 2023.

D. Alita, A. D. Putra, and D. Darwis, “Analysis Of Classic Assumption Test And Multiple Linear Regression Coefficient Test For Employee Structural Office Recommendation,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 3, p. 295, Jul. 2021, doi: 10.22146/ijccs.65586.

L. Alpianto and A. Hermawan, “Moving Average untuk Prediksi Harga Saham dengan Linear Regression,” Jurnal Buana Informatika, vol. 14, pp. 117–126, Nov. 2023.

S. Hanifah, F. Akbar, and R. P. Santi, “Implementasi Business Intelligence dan Prediksi Menggunakan Regresi Linear pada Data Penjualan dan Breakage di PT XYZ,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, pp. 144–152, Dec. 2022, doi: 10.25077/teknosi.v8i3.2022.144-152.

D. M. Huda, G. Dwilestari, and A. R. Rinaldi, “Prediksi Harga Mobil Bekas Menggunakan Algoritma Regresi Linear Berganda,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 150–157, Mar. 2024.

D. Novianty, N. D. Palasara, and M. Qomaruddin, “Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 9, no. 2, p. 81, Apr. 2021, doi: 10.26418/justin.v9i2.43664.

F. M. Basysyar and G. Dwilestari, “House Price Prediction Using Exploratory Data Analysis and Machine Learning with Feature Selection,” Acadlore Transactions on AI and Machine Learning, vol. 1, no. 1, pp. 11–21, Nov. 2022, doi: 10.56578/ataiml010103.

A. B. Adetunji, O. N. Akande, F. A. Ajala, O. Oyewo, Y. F. Akande, and G. Oluwadara, “House Price Prediction using Random Forest Machine Learning Technique,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 806–813. doi: 10.1016/j.procs.2022.01.100.

M. Radhi, S. H. Sinurat, D. R. H. Sitompul, E. Indra, and S. Informasi, “Prediksi Water Quality Index (Wqi) Menggunakan Algoritma Regressi Dengan Hyper-Parameter Tuning,” Jurnal Sistem Informasi dan Ilmu Komputer Prima), vol. 5, no. 1, pp. 44–50, Aug. 2021.

M. Radhi, D. R. H. Sitompul, S. H. Sinurat, and E. Indra, “Prediksi Harga Mobil Menggunakan Algoritma Regressi Dengan Hyper-Parameter Tuning,” Jurnal Sistem Informasi dan Ilmu Komputer Prima, vol. 4, no. 2, pp. 28–32, Feb. 2021.

E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” Journal Of Applied Computer Science And Technology(JACOST), vol. 4, no. 1, pp. 2723–1453, 2023, doi: 10.52158/jacost.491.

Downloads

Published

2025-02-15

How to Cite

Ningsih, I. R., Faqih, A., & Rinaldi, A. R. (2025). House Price Prediction Analysis Using a Comparison of Machine Learning Algorithms in the Jabodetabek Area. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 687–694. https://doi.org/10.59934/jaiea.v4i2.733