Application of Neural Network to Predict Rupiah Exchange Rate Against Korean Won

Authors

  • Agung Saeful STMIK IKMI Cirebon
  • Gifthera Dwilestari STMIK IKMI Cirebon
  • Ade Rizki Rinaldi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.734

Keywords:

Artificial Intelligence, Currency Exchange, Neural Networks, Prediction Accuracy, Rupiah-Korean Won

Abstract

This study investigates the application of neural networks for predicting the exchange rate of the Indonesian Rupiah against the Korean Won, addressing the challenges posed by currency fluctuations in international trade and investment. The research employs a data mining approach utilizing historical exchange rate data, which allows the neural network to identify complex patterns that traditional forecasting methods may miss. The model is developed using RapidMiner software, facilitating data preprocessing, transformation, and evaluation. The outcomes show that the predictions were quite accurate, as indicated by a low prediction error rate. The findings suggest that the neural network model not only provides reliable forecasts but also maintains consistent performance over time. This research contributes to the growing field of artificial intelligence in finance, highlighting the potential of advanced predictive models to enhance decision-making processes in the context of global economic interactions. The study underscores the importance of integrating technology with economic analysis to better navigate the complexities of currency exchange and its implications for financial risk management.

Downloads

Download data is not yet available.

References

K. Mawardi, “Dampak Nilai Tukar Mata Uang Terhadap Perdagangan Internasional,” J. Ilmu Tek. dan Teknol. Marit., vol. 2, no. 1, pp. 88–102, 2023, doi: https://doi.org/10.58192/ocean.v2i2.959.

M. Ikaningtyas, S. Andarini, A. C. Maurina, and lham A. Pangestu, “Strategi dan Kebijakan Ekspor Impor atau Perdagangan Internasional terhadap Pertumbuhan Ekonomi Indonesia,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 5, no. 1, pp. 160–165, 2023, doi: 10.47467/elmal.v5i1.3474.

P. Herwanto, F. A. Suwandy, Y. W. A. Rustam, and Rosida, “Analisis Perbandingan Model Algoritma Data Mining dalam Memprediksi Harga Emas terhadap Mata Uang US Dollar (XAU/USD) di Pasar Forex,” Inf. (Jurnal Inform. dan Sist. informasi), vol. 16, no. 1, pp. 1–20, 2024, doi: https://doi.org/10.37424/informasi.v16i1.292.

M. S. T. Putra and Y. Azhar, “Perbandingan Model Logistic Regression dan Artificial Neural Network pada Prediksi Pembatalan Hotel,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 1, pp. 29–37, 2021, doi: 10.14421/jiska.2021.61-04.

J. Yang et al., “Brief introduction of medical database and data mining technology in big data era,” J. Evid. Based. Med., vol. 13, no. 1, pp. 57–69, 2020, doi: 10.1111/jebm.12373.

L. Kovács and H. Ghous, “Efficiency comparison of Python and RapidMiner,” Multidiszcip. Tudományok, vol. 10, no. 3, pp. 212–220, 2020, doi: 10.35925/j.multi.2020.3.26.

B. Pradito and D. S. Purnia, “Komparasi Algoritma Linear Regression dan Neural Network Untuk Memprediksi Nilai Kurs Mata Uang,” EVOLUSI J. Sains dan Manaj., vol. 10, no. 2, pp. 64–71, 2022, doi: 10.31294/evolusi.v10i2.13284.

M. A. Setyadji, A. Faqih, and Y. A. Wijaya, “Peramalan Harga Komoditas Beras Di Kalimantan Timur Menggunakan Algoritma Neural Network,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 320–324, 2023, doi: 10.36040/jati.v7i1.6327.

T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-15-5481-2022.

E. Fatchurin, A. Fanani, and M. Hafiyusholeh, “Peramalan Penggunaan Bahan Bakar Pada Pembangkit Listrik Tenaga Gas Uap Menggunakan Metode Backpropagation Neural Network,” J. Ris. dan Apl. Mat., vol. 4, no. 2, p. 82, 2020, doi: 10.26740/jram.v4n2.p82-92.

S. Anwar, D. A. Kurnia, A. Faqih, S. R. Sari, and F. A. H. Airi, “Prediksi Hasil Belajar Hybrid Menggunakan Artificial Neural Network Dengan Multilayer Perceptron,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1591, 2022, doi: 10.30865/jurikom.v9i5.5024.

T. Y. E. Nababan, B. Warsito, and A. Rusgiyono, “Pemodelan Wavelet Neural Network Untuk Prediksi Nilai Tukar Rupiah Terhadap Dolar As,” J. Gaussian, vol. 9, no. 2, pp. 217–226, 2020, doi: 10.14710/j.gauss.v9i2.27823.

C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data,” Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 10.3389/fenrg.2021.652801.

D. Kartini, F. Abadi, and T. H. Saragih, “Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 39–44, 2021, doi: 10.29207/resti.v5i1.2602.

P. Arsi and J. Prayogi, “Optimasi Prediksi NilaiTukar Rupiah Terhadap Dolar Menggunakan Neural Network Berbasiskan Algoritma Genetika,” J. Inform., vol. 7, no. 1, pp. 8–14, 2020, doi: 10.31311/ji.v7i1.6793.

Downloads

Published

2025-02-15

How to Cite

Saeful, A., Dwilestari, G. ., & Rinaldi, A. R. . (2025). Application of Neural Network to Predict Rupiah Exchange Rate Against Korean Won. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 695–701. https://doi.org/10.59934/jaiea.v4i2.734