Support Vector Regression to Improve Ethereum Price Prediction for Trading Strategies
DOI:
https://doi.org/10.59934/jaiea.v4i2.740Keywords:
Cryptocurrency, Ethereum, Support Vector RegressionAbstract
Predicting erratic assets like Ethereum is difficult in the dynamic cryptocurrency market. This study uses an enhanced Support Vector Regression (SVR) algorithm to create a daily price prediction model for Ethereum. Yahoo Finance provided the data, which was preprocessed to include missing value cleaning, normalization, and feature extraction of Moving Average (MA) and Exponential Moving Average (EMA). The data was collected between August 4, 2019 and August 4, 2024. An ideal combination was obtained by parameter optimization with GridSearchCV: gamma scale, linear kernel, epsilon of 1, and C of 100. The model performed well, as evidenced by its R2 of 0.9985 and MSE of 2137.97. The model's reliability in predicting Ethereum's price movement patterns was validated via prediction graphs. A 30-day forecast indicated a stable trend, with prices slightly decreasing from $2921.31 on January 1, 2025, to $2919.83 on January 31, 2025. These results highlight the importance of data preprocessing and parameter optimization in enhancing SVR model performance.
Downloads
References
A. Aulia, B. Aprianti, Y. Supriyanto, and C. Rozikin, “Prediksi Harga Emas dengan Menggunakan Algoritma Support Vector Regression (Svr) dan Linear Regression,” J. Ilm. Wahana Pendidik., vol. 8, no. 5, pp. 84–88, 2022, doi: 10.5281/zenodo.6408864.
M. K. Anam and D. A. Jakaria, “Sistem Prediksi Harga Kripto Dengan Metode Regresi,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 2, pp. 467–479, 2023, [Online]. Available: http://jurnal.mdp.ac.id
A. Baidowi, E. Fitra, A. H. As, A. Tholib, and J. X. Guterres, “Implementasi GridSearch dalam Meningkatkan Kinerja Model Support Vector Regression ( SVR ) utuk Prediksi Penjualan Produk pada Meuble Rohman Jaya,” J. Explor. IT, vol. 3489, pp. 22–30, 2024.
P. A. Raharja, “Prediksi Harga Ethereum Menggunakan Metode Vector Autoregressive,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 3, no. 2, pp. 71–79, 2021, [Online]. Available: https://journal.ittelkom-pwt.ac.id/index.php/inista/article/view/285
N. M. Aruan, G. W. Simanjuntak, and A. I. Siagian, “Pendekatan Algoritma Support Vector Regression Dalam Memprediksi Harga Cryptocurrency (Studi Kasus: Binance),” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 3, 2023, [Online]. Available: http://jurnal.mdp.ac.id
I. M. Gananta, I. N. Purnama, and K. Queena Fredlina, “Optimasi Prediksi Harga Emas Dengan Metode Support Vector Regression (Svr) Menggunakan Algoritma Grid Search,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3160–3165, 2024, doi: 10.36040/jati.v7i6.8000.
Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.
Y. Ansori and K. F. H. Holle, “Perbandingan Metode Machine Learning dalam Analisis Sentimen Twitter,” J. Sist. dan Teknol. Inf., vol. 10, no. 4, p. 429, 2022, doi: 10.26418/justin.v10i4.51784.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.