Support Vector Regression to Improve Ethereum Price Prediction for Trading Strategies

Authors

  • Muhamad Abdul Fatah Informatics Enginneering, STMIK IKMI Cirebon, Indonesia
  • Martanto Informatics Management, STMIK IKMI Cirebon, Indonesia
  • Arif Rinaldi Dikananda Software Engineering, STMIK IKMI Cirebon, Indonesia
  • Ahmad Rifai Informatics Enginneering, STMIK IKMI Cirebon, Indonesia

DOI:

https://doi.org/10.59934/jaiea.v4i2.740

Keywords:

Cryptocurrency, Ethereum, Support Vector Regression

Abstract

Predicting erratic assets like Ethereum is difficult in the dynamic cryptocurrency market. This study uses an enhanced Support Vector Regression (SVR) algorithm to create a daily price prediction model for Ethereum. Yahoo Finance provided the data, which was preprocessed to include missing value cleaning, normalization, and feature extraction of Moving Average (MA) and Exponential Moving Average (EMA). The data was collected between August 4, 2019 and August 4, 2024. An ideal combination was obtained by parameter optimization with GridSearchCV: gamma scale, linear kernel, epsilon of 1, and C of 100. The model performed well, as evidenced by its R2 of 0.9985 and MSE of 2137.97. The model's reliability in predicting Ethereum's price movement patterns was validated via prediction graphs. A 30-day forecast indicated a stable trend, with prices slightly decreasing from $2921.31 on January 1, 2025, to $2919.83 on January 31, 2025. These results highlight the importance of data preprocessing and parameter optimization in enhancing SVR model performance.

Downloads

Download data is not yet available.

References

A. Aulia, B. Aprianti, Y. Supriyanto, and C. Rozikin, “Prediksi Harga Emas dengan Menggunakan Algoritma Support Vector Regression (Svr) dan Linear Regression,” J. Ilm. Wahana Pendidik., vol. 8, no. 5, pp. 84–88, 2022, doi: 10.5281/zenodo.6408864.

M. K. Anam and D. A. Jakaria, “Sistem Prediksi Harga Kripto Dengan Metode Regresi,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 2, pp. 467–479, 2023, [Online]. Available: http://jurnal.mdp.ac.id

A. Baidowi, E. Fitra, A. H. As, A. Tholib, and J. X. Guterres, “Implementasi GridSearch dalam Meningkatkan Kinerja Model Support Vector Regression ( SVR ) utuk Prediksi Penjualan Produk pada Meuble Rohman Jaya,” J. Explor. IT, vol. 3489, pp. 22–30, 2024.

P. A. Raharja, “Prediksi Harga Ethereum Menggunakan Metode Vector Autoregressive,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 3, no. 2, pp. 71–79, 2021, [Online]. Available: https://journal.ittelkom-pwt.ac.id/index.php/inista/article/view/285

N. M. Aruan, G. W. Simanjuntak, and A. I. Siagian, “Pendekatan Algoritma Support Vector Regression Dalam Memprediksi Harga Cryptocurrency (Studi Kasus: Binance),” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 3, 2023, [Online]. Available: http://jurnal.mdp.ac.id

I. M. Gananta, I. N. Purnama, and K. Queena Fredlina, “Optimasi Prediksi Harga Emas Dengan Metode Support Vector Regression (Svr) Menggunakan Algoritma Grid Search,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3160–3165, 2024, doi: 10.36040/jati.v7i6.8000.

Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.

Y. Ansori and K. F. H. Holle, “Perbandingan Metode Machine Learning dalam Analisis Sentimen Twitter,” J. Sist. dan Teknol. Inf., vol. 10, no. 4, p. 429, 2022, doi: 10.26418/justin.v10i4.51784.

Downloads

Published

2025-02-15

How to Cite

Muhamad Abdul Fatah, Martanto, Dikananda, A. R., & Rifai, A. (2025). Support Vector Regression to Improve Ethereum Price Prediction for Trading Strategies. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 738–744. https://doi.org/10.59934/jaiea.v4i2.740