The Effect of SMOTE Application on Support Vector Machine Performance in Sentiment Classification on Imbalanced Datasets
DOI:
https://doi.org/10.59934/jaiea.v4i2.742Keywords:
Support Vector Machine(SVM), Social Media X, SMOTE, Free Lunch ProgramAbstract
This research explores the effect of applying Synthetic Minority Oversampling Technique (SMOTE) on the performance of Support Vector Machine (SVM) algorithm in sentiment classification on imbalanced datasets. Public review data was collected from social media platform X (formerly Twitter) regarding the Free Lunch Program, with a total of 2,368 reviews automatically labeled using the BERT model into three categories: positive, negative, and neutral. Sentiment imbalance in the dataset was addressed by applying SMOTE to generate synthetic data on minority classes. The research method follows the stages of Knowledge Discovery in Databases (KDD), including data selection, preprocessing, labeling, transformation using TF-IDF, SVM model training, and performance evaluation. The experimental results show that the application of SMOTE successfully improves the accuracy of the SVM model by 12.48%, from 71.41% to 83.89%. Other evaluation metrics, such as precision, recall, and F1-score, also showed significant improvement from 0.69, 0.71, and 0.68 to 0.84, respectively. These findings confirm that SMOTE is effective in overcoming data imbalance, resulting in a more accurate and reliable sentiment classification model. This research contributes to the application of sentiment analysis in data-driven public policy evaluation.
Downloads
References
S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, Oct. 2023, doi: 10.57152/malcom.v3i2.897.
O. Nurdiawan, R. Herdiana, and S. Anwar, “Penerapan Algoritma Support Vector Machine dalam Mengukur Kepuasan Pembelajaran Hybrid Learning,” MEANS (Media Inf. Anal. dan Sist., vol. 6, no. 2, pp. 130–134, Jan. 2021, doi: 10.54367/means.v6i2.1511.
O. H. Rahman, G. Abdillah, and A. Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 17–23, Feb. 2021, doi: 10.29207/resti.v5i1.2700.
C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” AITI (Jurnal Teknol. Informasi), vol. 18, no. 2, pp. 173–184, Nov. 2021, doi: 10.24246/aiti.v18i2.173-184.
F. M. Basysyar, G. Dwilestari, and A. I. Purnamasari, “ANALYSIS STUDENT EMOTIONS AND MENTAL HEALTH ON,” vol. 10, no. 2, pp. 361–368, 2024, doi: 10.33480/jitk.v10i2.5967.ANALYSIS.
A. Karimah, G. Dwilestari, and Mulyawan, “Analisis Sentimen Komentar Video Mobil Listrik Di Platform Youtube Dengan Metode Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 767–737, 2024, doi: 10.36040/jati.v8i1.8373.
T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (SVM) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science Inf. Technol. J., vol. 4, no. 2, pp. 139–145, Oct. 2021, doi: 10.31598/sintechjournal.v4i2.762.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J., vol. 10, no. 02, pp. 71–76, 2020.
V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, May 2020, doi: 10.22146/jnteti.v9i2.102.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma SVM,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, Feb. 2021, doi: 10.33365/jdmsi.v2i1.1021.
H. Saputra, “Analisis Sentimen Pada Vaksin Booster Menggunakan Algoritma Support Vector Machine Multiclass Di Twitter,” J. Teknol. Pint., vol. 3, no. 10, pp. 1–26, 2023, [Online]. Available: http://teknologipintar.org/index.php/teknologipintar/article/view/506
D. Atika, Styawati, and A. Ari Aldino, “Term Frequency-Inverse Document Frequency Support Vector Machine Untuk Analisis Sentimen Opini Masyarakat Terhadap Tekanan Mental Pada Media Sosial Twitter,” J. Teknol. dan Sist. Inf., vol. 3, no. 4, pp. 86–97, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
R. Wati and S. Ernawati, “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,” J. Tek. Inform. UNIKA St. Thomas, vol. 06, no. 02, pp. 240–247, Nov. 2021, doi: 10.54367/jtiust.v6i2.1465.
O. I. Gifari, M. Adha, I. R. Hendrawan, and F. F. Setlight Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022.
W. P. Hutami, H. Wijayanto, and I. D. Sulvianti, “Penerapan Support Vector Machine dengan SMOTE Untuk Klasifikasi Sentimen Pemberitaan Omnibus Law Pada Situs CNNIndonesia.com,” Xplore J. Stat., vol. 11, no. 1, pp. 26–35, Jan. 2022, doi: 10.29244/xplore.v11i1.852.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.