Sentiment analysis to classify TikTok Shop Users on Twitter with Naïve Bayes Classifier Algorithm
DOI:
https://doi.org/10.59934/jaiea.v4i2.748Keywords:
Tiktok Shop, sentiment analysis, Naïve Bayes Classifier, Twitter;Synthetic Minority Oversampling Technique (SMOTE)Abstract
Advances in information technology have facilitated the use of social media as an e-commerce platform, with TikTok Shop enabling in-person transactions. This research addresses the gap in understanding user perceptions of TikTok Shop through sentiment analysis on Twitter. Sentiment classification is performed using the Naïve Bayes Classifier algorithm. The dataset consists of 1,907 Indonesian tweets, collected from January 2023 to July 2024, and processed using RapidMiner in the Knowledge Discovery in Database (KDD) framework. The preprocessing stages include data cleaning, normalization, tokenization, stopword removal, and stemming. To overcome data imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied. The model achieved 93.98% accuracy, with balanced precision and recall for positive, neutral, and negative sentiments. The sentiment distribution among TikTok Shop users on Twitter was 35.5% positive, 35.5% negative, and 29.0% neutral. This research provides insights into consumer behavior on social media and emphasizes the importance of sentiment analysis to increase user engagement and understand market perception. This research is expected to provide information to platform developers and businesses looking to improve TikTok
Downloads
References
N. Al Maeni, N. Suarna, and W. Prihartono, “Analisis Sentimen Pengguna Shopee Berdasarkan Data Tweet Dari Twitter Menggunakan Metode Naive Bayes Classifier,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1834–1840, 2024, doi: 10.36040/jati.v8i2.8298.
E. Andrian and A. Rahman Isnain, “Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, pp. 788–796, 2024, doi: 10.30865/mib.v8i2.7530.
Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.
S. Saepudin, S. Widiastuti, and C. Irawan, “Analisis Sentimen Ulasan Platform Media Sosial Menggunakan Algoritma Naïve Bayes Classifier,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 2, pp. 236–243, 2023.
A. M. H. Pardede, “PERANCANGAN SISTEM PAKAR DIAGNOSA PENYAKIT TANAMAN KELAPA SAWIT DENGAN METODE BAYES STUDY KASUS PT.UKINDO BLANKAHAN ESTATE,” Jurnal KAPUTAMA, 2016, doi: 10.21248/contrib.entomol.13.7-8.894-901.
A. F. Sari, M. Safii, D. Suhendro, and I. S. Damanik, “Implementation Data Mining of Employement Contract Exten-sion at Indosat Using Naïve Bayes,” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 1, no. 1, 2021, doi: 10.59934/jaiea.v1i1.52.
N. A. Alabdulkarim, M. A. Haq, and J. Gyani, “Exploring Sentiment Analysis on Social Media Texts,” Engineering, Technology and Applied Science Research, vol. 14, no. 3, pp. 14442–14450, 2024, doi: 10.48084/etasr.7238.
M. F. Fakhrezi, Adian Fatchur Rochim, and Dinar Mutiara Kusomo Nugraheni, “Comparison of Sentiment Analysis Methods Based on Accuracy Value Case Study: Twitter Mentions of Academic Article,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 1, pp. 161–167, 2023, doi: 10.29207/resti.v7i1.4767.
P. Putra, A. M. H. Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” JTIK (Jurnal Teknik Informatika Kaputama), vol. 6, no. 1, pp. 297–305, 2022.
S. Suhada and A. M. H. Pardede, “PENGKLASTERAN DOKUMEN DENGAN MENGGUNAKAN ALGORITMA SUPPORT VECTOR CLUSTERING,” Jurnal Sistem Informasi Kaputama, vol. 3, no. 2, pp. 1–6, 2019.
D. Aryani, B. Irawan, and A. Bahtiar, “Implementasi Data Mining Pada Data Penjualan Pakaian Menggunakan Algoritma K-Means Dengan Optimize Parameter Grid,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1673–1680, 2024, doi: 10.36040/jati.v8i2.9147.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” Jurnal Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.
H. Hajaroh, T. Suprapti, and R. Narasati, “Implementasi Algoritma Naive Bayes Untuk Analisis Sentimen Ulasan Produk Makanan Dan Minuman Di Tokopedia,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 111–118, 2024, doi: 10.36040/jati.v8i1.8237.
A. M. H. Pardede, M. Sihombing, and others, “Comparison Of K-Nearest Neighbor And CNN Classification Methods In Diabetic Data Sets,” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 3, no. 1, pp. 128–134, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.