Application Of Sugeno's Fuzzy Inference System In Determining Inventory Goat Milk

Authors

  • Windah Sahara STIKOM Tunas Bangsa

DOI:

https://doi.org/10.53842/jaiea.v1i2.75

Keywords:

Goat's Milk, Animal Husbandry, Fuzzy Logic, Fuzzy Sugeno

Abstract

Goat milk is one of the milk that is traded by the community because this milk has many benefits that are good for the health of the body and prevent bone damage in old age. Thalebkawnhinca Farm is a business that trades goat's milk both per liter and per pack. The erratic supply of goat's milk causes consumer demand cannot be fulfilled and the milk sales process becomes hampered. Therefore, this study aims to apply fuzzy logic with the Sugeno method in determining the amount of goat milk supply at Thalebkawanhinca Farm based on data on demand and sales of milk in April 2021. Based on data on demand and sales of goat's milk, the amount of milk supply that must be added if known demand of 90 liters and sales of 75 liters amounted to 25.1953125 liters. The result of this research is the implementation of a milk supply system that can be used in determining and providing information on the amount of goat's milk supply to the owner of the Thalebkawanhinca Farm.

References

L. Zadeh, “Fuzzy logic—a personal perspective,” Fuzzy Sets Syst., vol. 281, May 2015, doi: 10.1016/j.fss.2015.05.009.

H. Nasution, “Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan,” ELKHA J. Tek. Elektro, vol. 4, no. 2, pp. 4–8, 2012.

N. S. Pasaribu, J. T. Hardinata, and H. Qurniawan, “Application of The Fuzzy Tsukamoto Method in Determining Household Industry Products,” vol. 1, no. 1, 2021.

F. Dernoncourt, “Fuzzy logic: between human reasoning and artificial intelligence,” Jan. 2011.

Ginola, A. B. Pulungan, W. Purwanto, and I. Yelfianhar, “Simulation of Brushless DC Motor Speed Control with Fuzzy Logic Method,” J. Inotera, vol. 5, no. 2, pp. 139–145, 2020, doi: 10.31572/inotera.vol5.iss2.2020.id125.

J. S. Cervantes Rojas, W. Yu, S. Salazar-Cruz, and I. Chairez, “Takagi-Sugeno Dynamic Neuro-Fuzzy Controller of Uncertain Nonlinear Systems,” IEEE Trans. Fuzzy Syst., vol. PP, p. 1, Dec. 2017, doi: 10.1109/TFUZZ.2016.2612697.

S. Hardiani and N. Sisharini, “Analysis of Competitiveness Traditional Retail To Modern Retails in Consumer Perspective,” Int. Conf. "Sustainable Dev. Goals 2030 Challenges its Solut., no. August, pp. 224–231, 2017.

S. L. M. Sitio, “Penerapan Fuzzy Inference System Sugeno untuk Menentukan Jumlah Pembelian Obat (Studi Kasus: Garuda Sentra Medika),” J. Inform. Univ. Pamulang, vol. 3, no. 2, p. 104, 2018, doi: 10.32493/informatika.v3i2.1522.

A. R. Pratama, D. A. Hutagalung, W. Siregar, and H. Sihombing, “Monitoring patient health based on medical records using fuzzy logic method,” SinkrOn, vol. 3, no. 2, p. 20, 2019, doi: 10.33395/sinkron.v3i2.10014.

M. Djalal and F. Faisal, “Intelligent Fuzzy Logic - Cuckoo Search Algorithm Method for Short-Term Electric Load Forecasting in 150 kV Sulselrabar System,” Lontar Komput. J. Ilm. Teknol. Inf., p. 154, Dec. 2017, doi: 10.24843/LKJITI.2017.v08.i03.p02.

dwi marisa efendi and ferly ardhy ardhy, “Perbandingan Metode Fuzzy Inferensi Stukamoto dan Sugeno untuk Memprediksi Pemesanan Roti Jordan,” J. Tekno Kompak, vol. 12, no. 2, pp. 45–50, 2018, doi: 10.33365/jtk.v12i2.147.

R. Meimaharani and T. Listyorini, “Analisis Sistem Inference Fuzzy Sugeno Dalam Menentukan Harga Penjualan Tanah Untuk Pembangunan Minimarket,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 5, no. 1, pp. 89–96, 2014.

A. M. H. Pardede et al., “Decision Support System for Deciding Eligible Journals to be Published in Majalah Kedokteran Nusantara Using the Fuzzy Logic Method,” in Journal of Physics: Conference Series, 2019, vol. 1363, no. 1, doi: 10.1088/1742-6596/1363/1/012081.

Downloads

Published

2022-02-09

How to Cite

Windah Sahara. (2022). Application Of Sugeno’s Fuzzy Inference System In Determining Inventory Goat Milk. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 1(2), 108–112. https://doi.org/10.53842/jaiea.v1i2.75