Comparative Analysis of Demand Forecasting Accuracy in Sajiku Seasoned Flour Product with Software POM-QM
DOI:
https://doi.org/10.59934/jaiea.v4i2.751Keywords:
Demand Forecast, Linear Regression, Moving Average, Sajiku, Single Exponential SmoothingAbstract
Indonesia's growing wheat flour consumption requires precise demand forecasting to optimize supply chain management. This study evaluates the forecasting accuracy of Sajiku seasoned flour demand using three methods: Single Exponential Smoothing, Moving Average, and Linear Regression. Data processing and forecasting error calculations were performed using POM-QM software. The analysis reveals that the Linear Regression method yields the lowest forecasting error, making it the most reliable approach for predicting future demand. This study emphasizes the importance of selecting suitable forecasting techniques to improve the accuracy of demand predictions, which can enhance customer satisfaction and contribute to the long-term sustainability of businesses. The findings underscore the significance of accurate demand planning in maintaining a well-balanced supply chain and addressing market fluctuations effectively.
Downloads
References
E. K. Pangestuti and P. Darmawan, “Analisis Kadar Abu dalam Tepung Terigu dengan Metode Gravimetri,” Jurnal Kimia Dan Rekayasa,
vol. 2, no. 1, 2021, doi: 10.31001/jkireka.v2i1.22.
F. Ahmad, “Penentuan Metode Peramalan Pada Produksi Part New Granada Bowl ST di PT. X,” JISI: Jurnal Integrasi Sistem Industri, vol. 7, no. 1, 2020, doi: 10.24853/jisi.7.1.31-39.
A. Lusiana and P. Yuliarty, "Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X," Jurnal Inovatif: Jurnal Teknik Industri, vol. 10, no. 1, 2020, doi: 10.36040/industri.v10i1.2530.
Z. I. Vindari and W. Wahyudin and A. G. Azzahra S. P. Khan and S. M. Ayuningtyas and W. Rohmah, "Analisis Peramalan Permintaan pada Part Arm Rear Brake KWBF di PT Ciptaunggul Karya Abadi," Jurnal Serambi Engineering, vol. 8, no. 1, 2023, doi: 10.32672/jse.v8i1.5525.
H. Supriyatin, Manajemen Produksi dan Operasi, Jakarta: Mitra Kreatif Solusindo, 2013.
I. Solikin and S. Hardini, ‘‘Aplikasi Forecasting Stok Barang Menggunakan Metode Weighted Moving Average (WMA) pada Metrojaya Komputer,’’ Jurnal Pengembangan IT, vol. 4, no. 2, 2019.
A. Nasution, ‘‘Metode Weighted Moving Average Dalam M-Forecasting,’’ Jurnal Teknologi dan Sistem Informasi, vol. 5, no. 2, 2019.
H. Purnomo, Manajemen Operasi, Sleman: Sigma, 2017.
S. Sinulingga, Perencanaan dan Pengendalian Produksi, Yogyakarta: Graha Ilmu, 2009.
S. Panggabean et al., “Simulasi Exponential Moving Avarage dan Single Exponential Smoothing: Sebuah Perbandingan Akurasi Metode Peramalan,” Jurnal Pemikiran dan Penelitian Pendidikan Matematika (JP3M), vol. 4, no. 1, 2021.
M. Montgomery and D. C. Jennings and C. L. Kulahci, Introduction to time series analysis and forecasting. John Wiley & Sons, 2015.
Riki and Stefanus, “Pengendalian Persediaan Dengan Metode Forcasting: Moving Average dan Exponential Smoothing,” Jurnal Algor, vol. 2, no. 1, 2020.
G. N. Ayuni and D. Fitrianah, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ,” Jurnal Telematika, vol. 14, no. 2, 2019, doi: 10.61769/telematika.v14i2.321.
F. Wahyu and B. Hendrik, “Perbandingan Algoritma Time Series Dan Fuzzy Inference System Dalam Analisis Data Deret Waktu,” Jurnal Penelitian Teknologi Informasi Dan Sains, vol. 1, no. 3, 2023.
R. D. Putra and Y. Apridiansyah and E. Syahputra, ‘‘Penerapan Metode Monte Carlo pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhammadiyah Bengkulu,’’ Jurnal Ilmiah Sistem Informasi, Teknologi Informasi, dan Sistem Komputer, vol. 17, no. 2, 2022.
M. Arif and S. Supriyadi and D. Cahyadi, “Analisis Perencanaan Persediaan Batubara FX Dengan Metode Material Requirement Planning,” Jurnal Manajemen Industri dan Logistik, vol. 1, no. 2, 2018, doi: 10.30988/jmil.v1i2.25.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.