FP-Growth Algorithm for Association Model Optimization in Household Sales Data
DOI:
https://doi.org/10.59934/jaiea.v4i2.760Keywords:
Association Rules; Data Mining; FP-Growth; Knowledge Discovery in Databases; Purchasing PatternsAbstract
This research aims to find the value of support and confidence parameters needed so that associations between products can be identified and get the value of support, confidence, lift for the association rules found, and identify products that have the highest support value in frequent itemsets. The method used is Knowledge Discovery in Databases (KDD) with the stages of data collection, data pre-processing, data transformation, data mining, dan interpretation and evaluation. Sales transaction data was collected from January 1 to September 30, 2024, focusing on support and confidence values. The results showed that the association was successfully found with a parameter value of support 0.02 and confidence 0.5. In the association found, the products SWEAT BRONZE PANTS MINI M5 and SWEAT BRONZE PANTS MINI L5 have a support value of 0.004, confidence of 0.073, and lift of 1.421. These values indicate that although the frequency of this association is low, its strength exceeds that of a random association, which can be used in marketing strategies like product bundling.The product “SENSI PEREKAT S20” has the highest support of 0.149 (14.9%. The findings provide insight into the use of data mining algorithms to design data-driven marketing strategies and more efficient inventory management.
Downloads
References
N. Aprilia, B. Permadi, F. Aqila Izura Atanta Berampu, S. Andini Kesuma, and F. Ekonomi dan Bisnis Islam, “Media Sosial Sebagai Penunjang Komunikasi Bisnis Di Era Digital,” Util. J. Ilm. Pendidik. dan Ekon., vol. 7, no. 2, pp. 64–74, 2023, [Online]. Available: http://journal.stkipnurulhuda.ac.id/index.php/utility
A. Wati, “Item Layout for Building Materials Management with Apriori Algorithm,” J. Comput. Scine Inf. Technol., vol. 8, no. 3, pp. 80–85, 2022, doi: 10.35134/jcsitech.v8i3.42.
K. Ananda Mustari, P. Assiroj, B. Hartati, and F. Samuel, “Implementasi Data Mining Pada Instansi Pemerintahan (Systematic Literature Review),” J. Mhs. Tek. Inform., vol. 8, no. 3, pp. 3137–3142, 2024.
R. Yogasuwara and F. Ferdiansyah, “Implementasi Algoritma Frequent Growth (FP-Growth) Menentukan Asosiasi Antar Produk,” J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 165, 2022, doi: 10.30865/json.v4i1.4894.
J. Tri Suryani, N. Rahaningsih, and R. Danar Dana, “Penerapan Asosiasi Untuk Menganalisa Penjualan Barang Menggunakan Algoritma Fp-Growth,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3435–3440, 2024, doi: 10.36040/jati.v8i3.9750.
B. Xiao and G. Piao, “Analysis of Influencing Factors and Enterprise Strategy of Online Consumer Behavior Decision Based on Association Rules and Mobile Computing,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/6849017.
A. A. Riyadi, F. Amsury, N. Ruhyana, and I. A. Rahman, “Implementation of the Association Method in the Analysis of Sales Data from Manufacturing Companies,” J. Ris. Inform., vol. 5, no. 1, pp. 593–598, 2022, doi: 10.34288/jri.v5i1.491.
H. Huo, F. S. Ahmad, and B. Teoh, “Factors affecting consumers’ organic food purchase behavior: A systematic literature review and future research agenda,” Environ. Soc. Psychol., vol. 9, no. 2, pp. 1–12, 2024, doi: 10.54517/esp.v9i2.1892.
F. Faisol, Sri Aliami, and Samari, “Internal and External Factors of Consumer Behaviour: Phenomenon in Buying Decisions at the Keboen Rodjo Restaurant, Kediri,” Efektor, vol. 9, no. 1, pp. 35–47, 2022, doi: 10.29407/e.v9i1.16454.
M. Kadafi, “Penerapan Algoritma FP-GROWTH untuk Menemukan Pola Peminjaman Buku Perpustakaan UIN Raden Fatah Palembang,” MATICS J. Ilmu Komput. dan Teknol. Inf., vol. 10, no. 2, p. 52, 2019, doi: 10.18860/mat.v10i2.5628.
K. N. Wijaya, R. F. Malik, and S. Nurmaini, “Analisa Pola Frekuensi Keranjang Belanja Dengan Perbandingan Algoritma Fp-Growth ( Frequent Pattern Growth ) Dan Eclat Pada Minimarket,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 2, pp. 364–373, 2020.
F. Achmad, O. Nurdiawan, and Y. Arie Wijaya, “Analisa Pola Transaksi Pembelian Konsumen Pada Toko Ritel Kesehatan Menggunakan Algoritma Fp-Growth,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 168–175, 2023, doi: 10.36040/jati.v7i1.6210.
P. Salsabila, E. Wahyudin, G. Dwilestari, K. Kaslani, and F. Subhiyanto, “Penerapan Algoritma Fp-Growth Untuk Mengetahui Pola Pembelian Konsumen Di Warung Makan Dede,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1221–1128, 2024, doi: 10.36040/jati.v8i1.8964.
R. Wandri and A. Hanafiah, “Analysis of Information Technology (IT) Goods Sales Patterns Using the FP-Growth Algorithm,” IT J. Res. Dev., vol. 6, no. 2, pp. 130–141, 2022, doi: 10.25299/itjrd.2022.8155.
P. P. Sudarto and K. Handoko, “IMPLEMENTASI DATA MINING PADA PENGATURAN DATA GROWTH,” J. Comasie, vol. 02, 2023.
W. NG, R. Sukma, and C. Juliane, “Optimizing Marketing Strategies Using FP-Growth and Association Rule Mining Algorithms in the Textile Industry,” J. World Sci., vol. 3, no. 5, pp. 557–566, 2024, doi: 10.58344/jws.v3i5.599.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.