The Improvement of Indonesian Film Genre Clustering Model Using the K-Means Algorithm in Film Production Decision-Making

Authors

  • Wiratriyana STMIK IKMI Cirebon
  • Martanto STMIK IKMI Cirebon
  • Arif Rinaldi Dikananda STMIK IKMI Cirebon
  • Mulyawan STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.765

Keywords:

K-Means Algorithm, Film Genre, Film Clustering, Marketing Strategy, Data Analysis

Abstract

The Indonesian film industry is expanding rapidly, but understanding audience preferences remains a significant challenge for producers. This study aims to cluster Indonesian films by genre and synopsis using the K-Means algorithm to aid in marketing strategies and content development. The dataset comprises 1,271 Indonesian film entries, including attributes like release year, genre, synopsis, and user ratings. The research follows the Knowledge Discovery in Databases (KDD) framework, which involves data selection, preprocessing, transformation, clustering with K-Means, and evaluation using the Elbow method to identify the optimal number of clusters. The results show that the K-Means algorithm successfully grouped the films into three clusters: drama, horror, and others. The analysis indicates that drama films dominate the high-rating cluster, while horror films are more commonly found in the low-rating category. The use of Principal Component Analysis (PCA) in the visualization aids in interpreting the clustering results, providing a clearer view of the data distribution. These findings highlight the potential for improving film production strategies by aligning content with audience preferences. By understanding genre patterns and ratings, producers can make more informed decisions in marketing and content development.

Downloads

Download data is not yet available.

References

Elsa Vania, Salma Nuraini, and D. S. Y. Kartika, “Penggunaan Algoritma K-Means Clustering Untuk Menentukan Rekomendasi Film Indonesia,” Pros. Semin. Nas. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 207–214, 2022, doi: 10.33005/sitasi.v2i1.299.

M. N. Dayat, N. Suarna, and Y. A. Wijaya, “Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan Algoritma K-Means,” Intern. (Information Syst. Journal), vol. 6, no. 1, pp. 68–78, 2023, doi: 10.32627/internal.v6i1.686.

P. Parlaungan, F. Alva Mustika, and H. Dhika, “Sistem Rekomendasi Film Menggunakan Metode K-Means Clustering Berbasis Web,” J. SIMETRIS, vol. 13, no. 2, pp. 1–17, 2022, [Online]. Available: jurnal.umk.ac.id

A. Falakhi, “Pengolahan Data Pelanggan Dengan Tenik Clustering K-Means Di Aplikasi Weka,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 3, no. 2, pp. 54–60, 2023, doi: 10.53514/jco.v3i2.394.

T. Amalina, D. Bima, A. Pramana, and B. N. Sari, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” J. Ilm. Wahana Pendidik., vol. 8, no. 15, pp. 574–583, 2022, [Online]. Available: https://doi.org/10.5281/zenodo.7052276

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

M. R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” J. Softw. Eng. Ampera, vol. 1, no. 1, pp. 1–14, 2020, doi: 10.51519/journalsea.v1i1.10.

S. D. K. Wardani, A. S. Ariyanto, M. Umroh, and D. Rolliawati, “Perbandingan Hasil Metode Clustering K-Means, Db Scanner & Hierarchical Untuk Analisa Segmentasi Pasar,” JIKO (Jurnal Inform. dan Komputer), vol. 7, no. 2, p. 191, 2023, doi: 10.26798/jiko.v7i2.796.

R. S. T. Atmojo, “Analisis Data E-Absensi untuk Menganalisis Perbandingan Pola Disiplin Kerja menggunakan Algoritma Clustering K-Means,” Electrician, vol. 13, no. 1, p. 19, 2019, doi: 10.23960/elc.v13n1.2088.

C. Budihartanti, C. I. Ifaru, A. Zahra, and M. H. Aenuddin, “Pengelompokkan Film Pada Platform Netflix Menggunakan Metode K-Means Clustering Sebagai Rekomendasi Film,” vol. 5, no. 4, pp. 1392–1402, 2024, doi: 10.47065/josh.v5i4.5482.

M. Ikhsan Firmansyah, R. Saepul Rohman, and E. Marsusanti, “Penerapan Algoritma Klastering K-Means Untuk Fitur Atribut Pada Layanan Streaming Musik Spotify,” Indones. J. Comput. Sci., vol. 2, no. 2, pp. 58–66, 2023, doi: 10.31294/ijcs.v2i2.2465.

W. W. Kristianto and C. Rudianto, “Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki),” J. Pendidik. Teknol. Inf., no. 5, pp. 90–98, 2020.

A. Triningsih and H. Supriyono, “Aplikasi Data Mining Berbasis Web Menggunakan Metode K-Means Clustering Untuk Pengelompokan Penjualan,” J. Insypro (Information Syst. Process., vol. 4, no. 1, pp. 1–7, 2019, [Online]. Available: https://journal.uin-alauddin.ac.id/index.php/insypro/article/view/6889

S. D. Prasetiani and N. Rochmawati, “Penerapan Data Mining Untuk Clustering Menu Favorit Menggunakan Algoritma K-Means (Studi Kasus Kedai Expo),” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 278–286, 2022, doi: 10.26740/jinacs.v3n03.p278-286.

R. Bayu Prasetyo, Y. Agus Pranoto, and R. Primaswara Prasetya, “Implementasi Data Mining Menggunakan Algoritma K-Means Clustering Penyakit Pasien Rawat Jalan Pada Klinik Dr. Atirah Desa Sioyong, Sulteng,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2144–2151, 2023, doi: 10.36040/jati.v7i4.7419.

M. F. Djamaly, D. Djumarno, R. Astini, and D. Asih, “Literature Review: Peran Media Sosial Dalam Pemasaran Film Indonesia: Analisis Kepuasan Dan Niat Beli Penonton,” Sci. J. Reflect. Econ. Accounting, Manag. Bus., vol. 6, no. 3, pp. 647–659, 2023, doi: 10.37481/sjr.v6i3.706.

Downloads

Published

2025-02-15

How to Cite

Wiratriyana, Martanto, Arif Rinaldi Dikananda, & Mulyawan. (2025). The Improvement of Indonesian Film Genre Clustering Model Using the K-Means Algorithm in Film Production Decision-Making. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 858–864. https://doi.org/10.59934/jaiea.v4i2.765