Enhancing Election Staff Selection through Decision Tree-Based Classification
DOI:
https://doi.org/10.59934/jaiea.v4i2.768Keywords:
Decision Tree, Knowledge Discovery in Database, Classification, Machine Learning, Election OfficerAbstract
The selection of competent election committee members is a critical aspect in ensuring the success of a fair and transparent election process. However, the subjective nature of this selection process necessitates a data-driven approach to optimize the selection of officials who meet the required competency criteria. This research aims to classify the competencies of prospective election committee members using the Decision Tree algorithm based on demographic data and technological attributes of the population. The study employs the Knowledge Discovery in Databases (KDD) methodology, which includes the stages of data selection, preprocessing, transformation, data mining, and evaluation. In this process, data collected through various attributes are processed to build a classification model. The Decision Tree algorithm is applied to extract patterns from the data, resulting in a decision tree that can classify individuals into different competency classes based on existing features. The research findings indicate that the Decision Tree algorithm effectively classifies respondents into several competency classes that represent varying levels of skills and interest in the election process. The model shows that Class 4 is the dominant class, indicating that most respondents have moderate competency in technological skills and interest in elections. Class 3 represents individuals with higher technological skills but moderate interest, while Classes 2 and 1 represent individuals with varying combinations of interest and skills. This study demonstrates that using the Decision Tree algorithm in the KDD process is highly effective in objectively classifying the competencies of prospective election committee members. By analyzing the interactions among relevant attributes, the model provides insights that can improve the accuracy of election official selection. This data-driven approach can be adapted to other contexts requiring competency classification, offering broader benefits for various criteria-based selection systems.
Downloads
References
A. Zulfan Najib, S. Achmadi, and K. Auliasari, “Sistem Klasifikasi Data Penduduk Untuk Menentukan Tempat Pemungutan Suara (Tps) Dengan Metode K-Nearest Neighbor (Knn) Berbasis Website,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1323–1330, 2024, doi: 10.36040/jati.v8i2.9130.
I. D. Mienye and N. Jere, “A Survey of Decision Trees: Concepts, Algorithms, and Applications,” IEEE Access, vol. 12, no. June, pp. 86716–86727, 2024, doi: 10.1109/ACCESS.2024.3416838.
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge discovery in databases,” AI Mag., vol. 17, no. 3, pp. 37–53, 1996.
I. Iddrus and D. W. Sari, “Penerapan Data Mining Menggunakan Algoritma Decision Tree C4.5 Untuk Memprediksi Mahasiswa Drop Out Di Universitas Wiraraja,” J. Adv. Res. Inform., vol. 1, no. 02, pp. 1–7, 2023, doi: 10.24929/jars.v1i02.2684.
F. F. Kusuma, “Penerapan Data Mining Untuk Akurasi Analisis Cuaca di Australia Menggunakan Algoritma J48 Decision Tree,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 3, no. 2, pp. 65–68, 2023, doi: 10.53514/jco.v3i2.396.
Dwita Elisa Sinaga, Agus Perdana Windarto, and Rizki Alfadillah Nasution, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus : Apotek Franch Farma),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 123–131, 2022, doi: 10.30865/klik.v2i4.328.
I. Rahmianti, “Analisis Kelayakan Pemberian Kredit Koperasi Dengan Metode Data Mining Decision Tree,” J. Inform. dan Rekayasa Elektron., vol. 5, no. 2, pp. 153–161, 2022, doi: 10.36595/jire.v5i2.663.
K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.
N. Y. L. Gaol, “Prediksi Mahasiswa Berpotensi Non Aktif Menggunakan Data Mining dalam Decision Tree dan Algoritma C4.5,” J. Inf. Teknol., vol. 2, pp. 23–29, 2020, doi: 10.37034/jidt.v2i1.22.
A. Yudistira and M. Nurkhamid, “Penggunaan Data Mining Dalam Hit Rate Importasi Jalur Merah Dengan Model Decision Tree,” J. Perspekt. Bea Dan Cukai, vol. 5, no. 2, pp. 187–202, 2021, doi: 10.31092/jpbc.v5i2.1297.
K. A. Putri, D. Febriawan, and F. N. Hasan, “Implementation of Data Mining to Predict Student Study Period with Decision Tree Algorithm (C4.5),” J. Sisfokom (Sistem Inf. dan Komputer), vol. 13, no. 1, pp. 31–39, 2024, doi: 10.32736/sisfokom.v13i1.1943.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.