Analysis of Beverage Sales Data Using the FP-Growth Algorithm at Sini Aja Cafe

Authors

  • Widisa Adi Kumara STMIK IKMI Cirebon
  • Rini Astuti STMIK LIKMI Bandung
  • Willy Prihartono STMIK IKMI Cirebon
  • Tati Suprapti STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.772

Keywords:

Sales Data, Association Rules, Frequent Itemset, FP-Growth, Knowledge Discovery in Databases (KDD)

Abstract

The growth of information technology and data mining techniques has greatly helped analyze consumer purchasing behavior, particularly in marketing and inventory management. This study aims to uncover association patterns between products frequently bought by customers at Sini Aja Cafe and to measure these patterns' support and confidence values. The research uses Knowledge Discovery in Databases (KDD), including stages like data selection, preprocessing, transformation, applying the FP-Growth algorithm, and interpreting results. Data from 1,083 beverage sales transactions at Sini Aja Cafe from August 1 to October 31, 2024. The findings reveal five significant association rules when applying a minimum support of 0.1 (10%) and confidence of 0.3 (30%). Notably, if customers buy Red Velvet Oreo, there is a 56% chance they will also buy Thai Tea. Thai Tea sales dominate with a support value 0.557 (55.7%). The support values of the association rules range from 0.141, categorized as medium, and the confidence values range from 0.235, categorized as low. These findings offer valuable insights for the cafe owner to optimize operations, enhance customer satisfaction, and increase profits.

Downloads

Download data is not yet available.

References

K. Munthe, T. Syahputra, and R. Mahyuni, “Analisa Algoritma FP-Growth Pada Pola Pemesanan Makanan Dan Minuman Konsumen,” vol. 3, no. September, pp. 677–684, 2024.

R. L. Najmi, M. Irsyad, F. Insani, and A. Nazir, “Analisis Pola Asosiasi Data Transaksi Penjualan Minuman Menggunakan Algoritma FP-Growth dan Eclat,” vol. 5, no. 1, pp. 0–7, 2023, doi: 10.47065/bits.v5i1.3592.

F. Achmad et al., “ANALISA POLA TRANSAKSI PEMBELIAN KONSUMEN PADA TOKO RITEL KESEHATAN MENGGUNAKAN ALGORITMA FP-GROWTH,” vol. 7, no. 1, pp. 168–175, 2023.

A. Sofialaela, N. Rahaningsih, and I. Ali, “OPTIMASI POLA PENJUALAN DI TOKO KELONTONG SUMBER REJEKI BANDUNG MELALUI ANALISIS ASOSIASI DENGAN ALGORITMA FP-GROWTH,” vol. 8, no. 2, pp. 1916–1920, 2024.

A. R. Wibowo and A. Jananto, “Implementasi Data Mining Metode Asosiasi Algoritma FP-Growth Pada Perusahaan Ritel,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, p. 200, 2020, doi: 10.35585/inspir.v10i2.2585.

Y. Syach Putra, R. Kurniawan, and Y. Arie Wijaya, “Penerapan Data Mining Menggunakan Algoritma Fp-Growth Pada Data Penjualan Sembako,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 561–567, 2024, doi: 10.36040/jati.v8i1.8391.

H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori dan FP-Growth sebagai Dasar Pertimbangan Penentuan Paket Sembako,” Proceeding SENDIU 2020, vol. 6, pp. 36–42, 2020.

K. T. Wijaya and I. Pratama, “Penerapan Algoritma FP-Growth Untuk Analisis Data Transaksi Penjualan Di Internet Learning Cafe Kaliurang,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 4, pp. 642–651, 2022, doi: 10.32672/jnkti.v5i4.4585.

D. D. Darmansah and N. W. Wardani, “Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 105–117, 2021, doi: 10.35957/jatisi.v8i1.590.

M. Defriani and I. J. Jaelani, “Recognition of Regional Traditional House in Indonesia Using Convolutional Neural Network (CNN) Method,” J. Comput. Networks, Archit. High Perform. Comput., vol. 4, no. 2, pp. 104–115, 2022, doi: 10.47709/cnahpc.v4i2.1562.

P. Aufia, I. Lestari, and N. Cahyani, “Journal of Computer Networks , Architecture and High Performance Computing Application Of The Association Rule Method Based On Book Borrowing Patterns In Bojonegoro Regional Libraries Journal of Computer Networks , Architecture and High Performance Comput,” vol. 5, no. 2, pp. 751–759, 2023.

B. Anwar, P. T. Kejuruan, F. Teknik, and U. N. Padang, “Application of the FP-Growth Method to Determine Drug Sales Patterns,” vol. 8, no. 1, pp. 405–414, 2023.

Downloads

Published

2025-02-15

How to Cite

Widisa Adi Kumara, Rini Astuti, Willy Prihartono, & Tati Suprapti. (2025). Analysis of Beverage Sales Data Using the FP-Growth Algorithm at Sini Aja Cafe. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 893–900. https://doi.org/10.59934/jaiea.v4i2.772