Analysis of Fatigue Levels Using Multiple Linear Regression Methods on PT XYZ Workers

Authors

  • Audiansyah Agni Nirvana UPN Veteran Jawa Timur
  • Rizqi Novita Sari UPN Veteran Jawa Timur

DOI:

https://doi.org/10.59934/jaiea.v4i2.774

Keywords:

Anova, Fatigue, Multiple Linear Regression, Warehouse, Workers

Abstract

PT XYZ is a company engaged in warehousing. In every process, there are various activities that can cause fatigue in workers. Currently, researchers want to analyze the effect of body condition, material, and warehouse conditions on the fatigue level of warehouse workers. To do this, companies can use multiple linear regression tests with SPSS software. In the multiple linear regression test that has been carried out, it is known that the body condition and material factors do not have a strong influence on the level of fatigue that occurs. This is because the Pvalue >0.05. While the warehouse condition factor has a strong influence on the level of fatigue, H0 is rejected because it has a Pvalue of 0.015 <0.05. From the results of the anova test conducted, it can be seen that the three existing factors simultaneously affect the fatigue level of PT XYZ workers. This is because the significance value in the anova test is 0.004; smaller than the value of 0.005. The benefit of this research is that PT XYZ can determine the right solution in order to reduce the level of fatigue so that warehouse productivity increases.

Downloads

Download data is not yet available.

References

E. N. Pabumbun, S. S. Russeng, and M. Muis, “Faktor Yang Berhubungan Dengan Kelelahan Kerja Pada Pekerja PT Maruki International Indonesia,” Hasanuddin Journal of Public Health, vol. 3, no. 1, pp. 90-98, 2022.

T. Hidayat, A. Soegianto, and P. N. Aini, “Analisis Korelasi, Regresi, dan Evaluasi Karakter Morfologi 24 Aksesi Kapas (Gossypium sp.),” Agrin, vol. 24, no. 1, pp. 81-93, 2020.

Endaryono, N. Dwitiyanti, “Aplikasi Korelasi dan Regresi dalam Penentuan Koefisien Muai Volume Beberapa Minyak Nabati,” Jurnal Matematika dan Statistika serta Aplikasinya, vol. 11, no. 1, pp. 81-87, 2023.

M. D. Sianturi, I. O. L. Tobing, F. Effendy, B. Maulana, G. T. Sinaga, and Y. A. Sitorus, “Pengaruh Pendidikan, Pengalaman, Umur, dan Jam Kerja Terhadap Pendapatan Bulanan Karyawan Menggunakan Model Regresi Linear Berganda,” Jurnal Matematika dan Ilmu Pengetahuan Alam, vol. 5, no. 1, 2024.

A. Sari and D. U. Putri, “Penerapan Regresi Linear Berganda Untuk Memprediksi Diabetes Secara Dini,” Jurnal Teknologi Komputer dan Sistem Informasi, vol. 3, no. 1, pp. 32-39, 2023.

A. A. Zakaria, D. Lestantyo, and S. Jayanti, “Analisis Faktor Risiko Kelelahan Kerja Pada Pekerja di Pabrik Tahu X Semarang,” Jurnal Kesehatan Masyarakat, vol. 12, no. 2, pp. 148-153, 2024.

L. Adytra and D. H. Ramdhan, “Faktor-Faktor Yang Berhubungan Dengan Kelelahan Kerja di PT X di Jabodetabek,” Jurnal Cahaya Mandalika, 2023.

A. Padhil, A. S. Rini, and A. M. Husni, “Pengaruh Penerapan Warehouse Management System (WMS) Sebelum dan Sesudah Terhadap Kinerja Karyawan Gudang Finish Good Pada Pt. Triteguh Manunggal Sejati Gowa,” Jurnal Taguchi, vol. 3, no. 1, pp. 46-52, 2023.

N. A. Ningsih and L. Khaerunnisa, “Determinasi Produktivitas: Skill, Motivasi dan Lingkungan Kerja (Literature Review Pengantar Manajemen SDM),” Jurnal Teknologi Komputer dan Sistem Informasi, vol. 3, no. 2, pp. 550-560, 2022.

G. P. Suri and N. Y. Arifin, “Pelatihan Pengolahan Data Aplikasi SPSS Pada Siswa Smk Ibnu Sina Batam,” Jurnal Teknologi Komputer dan Sistem Informasi, vol. 1, no. 1, pp. 29-32, 2022.

Downloads

Published

2025-02-15

How to Cite

Audiansyah Agni Nirvana, & Rizqi Novita Sari. (2025). Analysis of Fatigue Levels Using Multiple Linear Regression Methods on PT XYZ Workers. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 911–915. https://doi.org/10.59934/jaiea.v4i2.774