Analysis of Passenger Satisfaction Levels Using the K-Means Cluster and Hierarchial Cluster Methods in Purabaya Sidoarjo Type A Terminal Services

Authors

  • Zahra Khania Putri UPN "Veteran" Jawa Timur
  • Akmal Suryadi UPN "Veteran" Jawa Timur

DOI:

https://doi.org/10.59934/jaiea.v4i2.788

Keywords:

Hierarchial Cluster, K-Means Cluster, Purabaya Type A Terminal, SPSS

Abstract

Purabaya Type A Terminal is one of the terminals that provides public transportation facilities in the form of bus transportation ranging from city buses, intra-provincial intercity buses, and inter-city inter-provincial buses. This study aims to analyze the level of passenger satisfaction with the service at the terminal and group each variable into a homogeneous group. The research methods used are the K-means Cluster and Hierarchial Cluster methods. The data from the questionnaire will be grouped into several groups that have relatively homogeneous properties using the help of SPSS software. From the results of the study, the output of Non-Hierarchial clusters was obtained in the form of Initial Cluster Centers, Iteration History, Final Cluster Centers, ANOVA, and Number of Cased In Each Cluster. Meanwhile, the output of the Hierarchial cluster is in the form of Case Processing Summary and Dendogram Using Average Linkage. Through analysis using the cluster method, all variables were obtained including in cluster 1 and none were included in cluster 2, the iterations carried out were 2 times and the valid data value was 100 data with a missing value of 0.

Downloads

Download data is not yet available.

References

Sudjana, Metode Statistika, Bandung: Tarsito, 2005

Tajul, M, Learning SPSS Without Pain, Bangladesh: Asa Publications, 2020

Tarigan, E.F., Nilmarito, S., Islamiyah, K., Darmana, A., & Suyanti, R.D. (2022). “Analisis Instrumen Tes Menggunakan Rasch Model dan Software SPSS 22.0.” Jurnal Inovasi Pendidikan Kimia, 16(2). 92-96. http://dx.doi.org/10.15294/jipk.v16i2.30530

M.M. Ramly, Sudarmin, B. Poerwanto. (2022). “Analisis Hierarchial Clustering Multiscale Bootstrap (Kasus: Indikator Kemiskinan di Provinsi Sulawesi Selatan Tahun 2020).” Journal of Statistics and Its Application on Teaching and Research, 4(3). 142-152. https://doi.org/10.35580/variansiunm26

Joseph, et al, Multivariate Data Analysis, Upper Saddle River: Prentice Hall, 2009

Natasya & Arie. (2021). “Analisis Cluster Kemiskinan Provinsi di Indonesia Tahun 2019 dengan Metode Partitoning dan Hierarki.” Jurnal Sistem Komputer, 10(2). 101-109. http://dx.doi.org/10.34010/komputika.v10i2.4317

A. Tifani, D.B.A. Pramana, B.N Sari. (2022). “Metode K-Means Clustering dalam Pengelompokkan Penjualan Produk Frozen Food.” Jurnal Ilmiah Wahana, 8(15). 574-583. https://doi.org/10.5281/zenodo.7052276

. Muhajir, N. Ismail, S. Syahreza. (2021). “Pemutakhiran Zona Musim (ZOM) Provinsi Aceh Menggunakan Data Blending Berbasis Non-Hirarki K-Means Cluster.” Jurnal Ilmiah Fisika FMipa Universitas Lambung Mangkurat, 18(1). 35-41. http://dx.doi.org/10.20527/flux.v18i1.8746

Downloads

Published

2025-02-15

How to Cite

Zahra Khania Putri, & Akmal Suryadi. (2025). Analysis of Passenger Satisfaction Levels Using the K-Means Cluster and Hierarchial Cluster Methods in Purabaya Sidoarjo Type A Terminal Services. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 952–961. https://doi.org/10.59934/jaiea.v4i2.788