Sales Data Classterization Analysis Using K-Means Method for Marketing Strategy Development
DOI:
https://doi.org/10.59934/jaiea.v4i2.792Keywords:
K-Means, Clustering, Sales data, Marketing Strategy, Rapid Miner, Davies-BouldinAbstract
In the digital era, utilizing sales data is very important to support strategic decision making. This research aims to overcome the problems faced by 9Doors Store in optimizing marketing strategies and stock management. The main problem faced is the lack of in-depth analysis of existing sales data, which results in difficulties in formulating appropriate marketing strategies and efficient stock management. For this reason, this research applies the K-Means Clustering method to group products based on customer purchasing behavior characteristics. The data used includes product categories, selling prices, initial stock, number of products sold, and total sales obtained from 9Doors Store during the period March to September 2024. The method used in this research is Data Mining approach with K-Means algorithm, which is implemented using RapidMiner software. The data analysis process goes through Knowledge Discovery in Databases (KDD) stages, including data collection, data cleaning (preprocessing), data transformation, and data mining using K-Means. Cluster evaluation is done using Davies-Bouldin Index (DBI) to assess the quality of clustering results. The results of this study show that the division of sales data into three clusters provides optimal results with the lowest DBI value (0.106), which indicates efficient clustering. This finding identifies products with high, medium, and low sales levels, which can be used to formulate more targeted marketing strategies. With these results, Toko 9Doors can improve stock management and design more effective promotions based on better customer segmentation.
Downloads
References
[Al-Fahmi, B. M., Rahmawati, E., & Sagirani, T. (2023). Penerapan K-Means Clustering Pada Pariwisata Kabupaten Bojonegoro Untuk Mendukung Keputusan Strategi Pemasaran. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(2), 141–149. https://doi.org/10.25077/teknosi.v9i2.2023.141-149
Alifa, T. T., & , Rini Astuti, F. M. B. (2024). Implementasi Data Mining Menggunakan Algoritma K- Means Clustering Dalam Analisis Penjualan Produk. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 602–607. https://doi.org/10.36040/jati.v8i1.8340
Arsyad, A. T., Nurlatifah, H., & Sunarmo, S. (2024). Usulan Strategi Pemasaran Universitas Al Azhar Indonesia Menggunakan Metode K-Means Clustering. JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, 9(1), 40. https://doi.org/10.36722/sst.v9i1.2699
Ashari, I. F., Banjarnahor, R., Farida, D. R., Aisyah, S. P., Dewi, A. P., & Humaya, N. (2022). Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies. Journal of Applied Informatics and Computing, 6(1), 07–15. https://doi.org/10.30871/jaic.v6i1.3485
Aulia, S. (2021). Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja). Djtechno: Jurnal Teknologi Informasi, 1(1), 1–5. https://doi.org/10.46576/djtechno.v1i1.964
Harani, N. H., Prianto, C., & Nugraha, F. A. (2020). Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python. Jurnal Manajemen Informatika (JAMIKA), 10(2), 133–146. https://doi.org/10.34010/jamika.v10i2.2683
[Hartati, T., Nurdiawan, O., & Wiyandi, E. (2021). Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari. Jurnal Sains Teknologi Transportasi Maritim, 3(1), 1–7. https://doi.org/10.51578/j.sitektransmar.v3i1.30
Hutagalung, J. (2022). Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(1), 606–620. https://doi.org/10.35957/jatisi.v9i1.1516
[Idham, I., Rosika, H., & Yuliadi, Y. (2024). Implementasi Rapidminer Untuk Clestering Data Penjualan Pakaian Menggunakan Metode K-Means. JUTECH : Journal Education and Technology, 5(1), 221–231. https://doi.org/10.31932/jutech.v5i1.3642
Kristianto, W. W., & Rudianto, C. (2020). Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki). Jurnal Pendidikan Teknologi Informasi (JUKANTI), 5, 90–98.
Mar’atun Sholihah, O., Suarna, N., Dwilestari, G., & R, N. (2023). Implementasi Metode K-Means Clustering Untuk Menganalisa Penerima Bantuan Di Desa Palasah. Jurnal Informatika Dan Teknologi Informasi, 2(1), 154–160. https://doi.org/10.56854/jt.v2i1.123
Maryam, S., Astuti, R., & Basysyar, F. M. (2023). OPTIMALISASI JUMLAH CLUSTER DATA SEKOLAH DASAR ( SD ) MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING. 7(6), 3640–3646.
Noviati, N., Mulyawan, M., Kurnia, D. A., & Rinaldi, A. R. (2022). Clustering Data Penjualan Produk Makanan pada Toko Toserba Yogya Siliwangi dengan Menggunakan Metode K-Means. MEANS (Media Informasi Analisa Dan Sistem), 7(1), 77–84. https://doi.org/10.54367/means.v7i1.1850
Nugraha, A., Nurdiawan, O., & Dwilestari, G. (2022). Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 849–855. https://doi.org/10.36040/jati.v6i2.5755
Sulaiman, M., Yudistira, R., Narasati, R., & Herdiana, R. (2024). Penerapan Data Mining dengan Metode Clustering untuk menentukan Strategi Peningkatan Penjualan Berdasarkan Data Transaksi. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 6(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.