Improving Student Achievement Clustering Model Using K-Means Algorithm in Pasundan Majalaya Vocational School

Authors

  • Sopian Abdul mukhsyi STMIK IKMI Cirebon
  • Ade Irma Purnamaari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Kaslani STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.793

Keywords:

K-Means Algorithm, Clustering, Davies-Bouldin Index, Student Achievement, Knowledge Discovery in Databases (KDD)

Abstract

This study analyzes and enhances the student achievement clustering model at SMK Pasundan Majalaya using the K-Means algorithm. The Knowledge Discovery in Databases (KDD) method and RapidMiner AI Studio 2024.1.0 were used to process data from 125 students based on 15 metrics, including academic scores and attendance rates. For group evaluation, the Elbow method and Davies-Bouldin Index (DBI) were employed. The results showed optimal clustering with 2 groups and a DBI value of 0.893. Analysis results revealed significant differences in characteristics between the two groups. Cluster_1 consists of 38 students and has lower score patterns (60-80), with attendance rates of 94-100%, and a positive correlation between attendance and academic achievement. On the other hand, Cluster_0 consists of 86 students and shows higher score patterns (67.5-87.5), with attendance rates of 80-100%, and demonstrates a positive correlation between attendance and academic achievement. Schools can use this clustering model to create learning approaches that are better suited to each student group.

Downloads

Download data is not yet available.

References

M. Hedayetul, I. Shovon, and M. Haque, “An Approach of Improving Student’s Academic Performance by using K-means clustering algorithm and Decision tree,” 2012. [Online]. Available: www.ijacsa.thesai.org

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” 2023.

M. Rafi, “Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa,” vol. 12, no. 2, pp. 121–129, 2020.

Z. Sitorus and U. Asahan, “PENERAPAN DATA MINING UNTUK CLUSTERING PENDUDUK MISKIN DI KOTA TANJUNGBALAI MENGGUNAKAN METODE ALGORITMA K-MEANS,” vol. 4307, no. 1, pp. 212–218, 2024.

M. Miranda, N. Rahaningsih, and R. D. Dana, “Analisis Clustering Data Anak Balita di Posyandu Kampung Sukarame Menggunakan Algoritma K-Means,” vol. 6, no. 1, pp. 136–141, 2024.

M. Veronica, H. Effendi, and O. Saleh, “Clustering Tingkat Kedisiplinan Pegawai Pada Pengadilan Tinggi Palembang Menggunakan Algoritma K-Means,” pp. 261–266, 2023.

Ramadani, S., Ambarita, I., & Pardede, A. M. H. (2019). Metode K-Means untuk pengelompokan masyarakat miskin dengan menggunakan jarak kedekatan Manhattan City Dan Euclidean (Studi kasus kota binjai). Inf. Syst. Dev, 4(2), 15-29.

Aditya Putra Prananda, Pardede, A. M. H., & Rahmadani. (2024). Segmentation Algorithm K – Means Based On The Maturity Level Of Blueberries. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 3(2), 584–589. https://doi.org/10.59934/jaiea.v3i2.433

Pardede A. M. H. et al 2019 Implementation of Data Mining to Classify the Consumer's Complaints of Electricity Usage Based on Consumer's Locations Using Clustering Method Journal of Physics: Conference Series 1363 12079

Downloads

Published

2025-02-15

How to Cite

Abdul mukhsyi, S., Irma Purnamaari, A. ., Bahtiar, A., & Kaslani. (2025). Improving Student Achievement Clustering Model Using K-Means Algorithm in Pasundan Majalaya Vocational School. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 977–985. https://doi.org/10.59934/jaiea.v4i2.793